Investigation of Physico-chemical Properties of Lipid-based Excipients in a Hot-melt Fluid Bed Coating Process PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Investigation of Physico-chemical Properties of Lipid-based Excipients in a Hot-melt Fluid Bed Coating Process PDF full book. Access full book title Investigation of Physico-chemical Properties of Lipid-based Excipients in a Hot-melt Fluid Bed Coating Process by Siddhi Santosh Hate. Download full books in PDF and EPUB format.

Investigation of Physico-chemical Properties of Lipid-based Excipients in a Hot-melt Fluid Bed Coating Process

Investigation of Physico-chemical Properties of Lipid-based Excipients in a Hot-melt Fluid Bed Coating Process PDF Author: Siddhi Santosh Hate
Publisher:
ISBN:
Category : Excipients
Languages : en
Pages : 48

Book Description


Investigation of Physico-chemical Properties of Lipid-based Excipients in a Hot-melt Fluid Bed Coating Process

Investigation of Physico-chemical Properties of Lipid-based Excipients in a Hot-melt Fluid Bed Coating Process PDF Author: Siddhi Santosh Hate
Publisher:
ISBN:
Category : Excipients
Languages : en
Pages : 48

Book Description


Lipid Excipients and Hot-melt Coating Technology

Lipid Excipients and Hot-melt Coating Technology PDF Author: Van Trung Tin Huynh
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Hot-melt coating by fluidised bed consists of delivering molten lipids onto surface of substrate particles in suspension and let them solidify with air-cooling. The process is evidently solventless and therefore time-, cost-efficient and eco-friendly. Lipids constitute a generally-regarded-as-safe class of excipients. Despite those advantages, challenges reside in the fact that their physicochemical and biopharmaceutical properties have not been thoroughly investigated. This thesis dealt with these challenges by considering manufacturability, product stability and release properties. In the first phase “formulation development”, a simple and nimble experimental approach was developed for process and product characterisation in early stage. NaCl, as active substance, allows for fast-track research conduct. With their diverse properties (e.g. complex-mixture vs. pure substance, polymorphism and crystallisation, adaptability to different processing approaches), beeswax, tristearin and trilaurin were chosen as coating materials under research. Additive addition was indispensable and additives of different types were tested with those three lipid systems: (I) polysorbates, (II) sorbitans, (III) vitamin E TPGS and (IV) talc. Besides, several physical and in vitro characterisation techniques have been established, for instance, for rapid screening of solid lipid-additive combinations, in situ monitoring of polymorphic transformation and crystal growth, coupling of digestion and release testing in biologically simulated media. In the second phase “pharmaceutical applications”, three beeswax-, tristearin- and trilaurin-based formulations were selected for coating amorphous solid dispersions of praziquantel. The objectives are (i) to study bioaccessibility of the amorphous active substance coated with lipids of varying digestibility and (ii) to investigate long-term stability of these hot-melt coated products. In conclusion, selection of good additives is important for development of solid lipid-based formulated products. In effect, they can improve productivity of coating operations as well as product performance (stability, release profile).

Edible Films and Coatings

Edible Films and Coatings PDF Author: Maria Pilar Montero Garcia
Publisher: CRC Press
ISBN: 1315356244
Category : Technology & Engineering
Languages : en
Pages : 607

Book Description
The search for better strategies to preserve foods with minimal changes during processing has been of great interest in recent decades. Traditionally, edible films and coatings have been used as a partial barrier to moisture, oxygen, and carbon dioxide through selective permeability to gases, as well as improving mechanical handling properties. The advances in this area have been breathtaking, and in fact their implementation in the industry is already a reality. Even so, there are still new developments in various fields and from various perspectives worth reporting. Edible Films and Coatings: Fundamentals and Applications discusses the newest generation of edible films and coatings that are being especially designed to allow the incorporation and/or controlled release of specific additives by means of nanoencapsulation, layer-by-layer assembly, and other promising technologies. Covering the latest novelties in research conducted in the field of edible packaging, it considers state-of-the-art innovations in coatings and films; novel applications, particularly in the design of gourmet foods; new advances in the incorporation of bioactive compounds; and potential applications in agronomy, an as yet little explored area, which could provide considerable advances in the preservation and quality of foods in the field.

Oral Lipid-Based Formulations

Oral Lipid-Based Formulations PDF Author: David J. Hauss
Publisher: CRC Press
ISBN: 1420017268
Category : Medical
Languages : en
Pages : 370

Book Description
Oral lipid-based formulations are attracting considerable attention due to their capacity to facilitate gastrointestinal absorption and reduce or eliminate the effect of food on the absorption of poorly water-soluble, lipophilic drugs. Despite the obvious and demonstrated utility of these formulations for addressing a persistent and growing problem

Hot-Melt Extrusion

Hot-Melt Extrusion PDF Author: Dennis Douroumis
Publisher: John Wiley & Sons
ISBN: 1118307879
Category : Science
Languages : en
Pages : 404

Book Description
Hot-melt extrusion (HME) - melting a substance and forcing it through an orifice under controlled conditions to form a new material - is an emerging processing technology in the pharmaceutical industry for the preparation of various dosage forms and drug delivery systems, for example granules and sustained release tablets. Hot-Melt Extrusion: Pharmaceutical Applications covers the main instrumentation, operation principles and theoretical background of HME. It then focuses on HME drug delivery systems, dosage forms and clinical studies (including pharmacokinetics and bioavailability) of HME products. Finally, the book includes some recent and novel HME applications, scale -up considerations and regulatory issues. Topics covered include: principles and die design of single screw extrusion twin screw extrusion techniques and practices in the laboratory and on production scale HME developments for the pharmaceutical industry solubility parameters for prediction of drug/polymer miscibility in HME formulations the influence of plasticizers in HME applications of polymethacrylate polymers in HME HME of ethylcellulose, hypromellose, and polyethylene oxide bioadhesion properties of polymeric films produced by HME taste masking using HME clinical studies, bioavailability and pharmacokinetics of HME products injection moulding and HME processing for pharmaceutical materials laminar dispersive & distributive mixing with dissolution and applications to HME technological considerations related to scale-up of HME processes devices and implant systems by HME an FDA perspective on HME product and process understanding improved process understanding and control of an HME process with near-infrared spectroscopy Hot-Melt Extrusion: Pharmaceutical Applications is an essential multidisciplinary guide to the emerging pharmaceutical uses of this processing technology for researchers in academia and industry working in drug formulation and delivery, pharmaceutical engineering and processing, and polymers and materials science. This is the first book from our brand new series Advances in Pharmaceutical Technology. Find out more about the series here.

Application of Reactive Melt Extrusion for Bioavailability Enhancement and Modified Drug Release

Application of Reactive Melt Extrusion for Bioavailability Enhancement and Modified Drug Release PDF Author: Xu Liu (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 528

Book Description
Hot melt extrusion (HME) has been widely applied to prepare amorphous solid dispersions (ASD) to improve the oral bioavailability of BCS Class II and Class IV compounds by increasing their kinetic solubility and dissolution rate. During the HME process, drug, polymer and other excipients are introduced into the barrel at different temperature setting and feed rates. The intermeshing screws mix and melt all materials using heat and an intense mechanical shearing force to achieve distributive and dispersive mixing and excellent homogeneity. The molecular level mixing allows close contact between API and excipients at high frequencies, which provide favorable environment to build drug-excipient intermolecular interactions to improve the physicochemical properties of ASD. Even though there are extensive reports about the pharmaceutical application of HME, most of the studies have been restricted to the manufacture of drug delivery systems where no clearly defined molecular level interaction are produced. Since the extrusion process is a high temperature and aggressive molecular level mixing process, lot of interactions would occur during the extrusion process, such as the ionic interaction, hydrogen bonding, pi-pi interaction, Van der Walls forces and lipophilic-lipophilic interactions. The rational design interactions between drug and excipients during the HME process would provide an inspiring strategy to overcome the drawback of HME, such as the thermal degradation of drug, poor physical stability of drug during the storage time or dissolution process. For ASD development, the polymer carriers play a critical role in stabilizing the drug amorphous state. Polymer selection to prepare the ASDs is largely empirical. There is a need for rational polymer selection, enabling design of stable amorphous solid dispersion. Drug-polymer interactions have been observed to improve the physical stability of ASDs. Supramolecular synthon approach has been applied to design cocrystal with adjusting physicochemical properties. What’s more, supramolecular synthon approach has been exploited to design ASD with exceptional physical stability. Based on all those non-covalent interactions, it is possible to achieve the in-situ modification of solid forms of active pharmaceutical ingredients by mechanochemistry using extrusion process, without changing the pharmacology of the API. The major goal of this research is to explore rational design interaction between drug and excipients during the HME process to prepare salt, polyelectronic complexes, nanocomposites, cocrystal and coamorphous to improve the oral bioavailability of poorly water-soluble drugs and adjusting drug release rate. In Chapter 1, we reviewed the most commonly used methods for characterization of ASDs both in solid state or in aqueous media. The advantage and disadvantage of each method is briefly summarized. All methods are divided into three different categories: microscopic and surface analysis methods, thermal analysis methods and spectroscopic methods. The latest characterization techniques are also introduced. Last, we discuss how these methods are applied at different stages in the ASDs product development life cycle. In Chapter 2, we investigate the reaction between naproxen and meglumine at elevated temperature with different molar ratio and study the impact of this reaction on the physical stabilities and in vitro drug-release properties of melt-extrudated naproxen amorphous solid dispersion. In Chapter 3, we use reactive melt extrusion to prepare sustained release lidocaine polyelectrolyte complex. In this study, the influence of the drug form (freebase vs. hydrochloride salt) on lidocaine-Eudragit L100-55 interactions, physical stability, and dissolution properties of extrudates was investigated. In Chapter 4, we prepare exfoliated montmorillonite-Eudragit RS nanocomposites using reactive melt extrusion and investigate the influence of clay loading, clay types on clay-polymer interactions and drug release properties. The clays are used as the filler material with Eudragit RS at different concentration and theophylline was the model compound. The resulting structure of the nanocomposites were characterized using TEM and XRPD. The hygroscopicity of the nanocomposites was investigated using DVS. The effect of the interfacial interaction between the polymer and the clay sheet, the clay loading as well as the clay type on the drug release behavior were further studied by the dissolution testing

Innovative delivery systems for paediatric medicines

Innovative delivery systems for paediatric medicines PDF Author:
Publisher: World Health Organization
ISBN: 9240008187
Category : Medical
Languages : en
Pages : 73

Book Description


Advanced Formulation and Processing Technologies in the Oral Delivery of Poorly Water-soluble Drugs

Advanced Formulation and Processing Technologies in the Oral Delivery of Poorly Water-soluble Drugs PDF Author: Bo Lang
Publisher:
ISBN:
Category :
Languages : en
Pages : 726

Book Description
With the advance of combinational chemistry and high throughput screening, an increasing number of pharmacologically active compounds have been discovered and developed. A significant proportion of those drug candidates are poorly water-soluble, thereby exhibiting limited absorption profiles after oral administration. Therefore, advanced formulation and processing technologies are demanded in order to overcome the biopharmaceutical limits of poorly water-soluble drugs. A number of pharmaceutical technologies have been investigated to address the solubility issue, such as particle size reduction, salt formation, lipid-based formulation, and solubilization. Within the scope of this dissertation, two of the pharmaceutical technologies were investigated names thin film freezing and hot-melt extrusion. The overall goal of the research was to improve the oral bioavailability of poorly water-soluble drugs by producing amorphous solid dispersion systems with enhanced wetting, dissolution, and supersaturation properties. In Chapter 1, the pharmaceutical applications of hot-melt extrusion technology was reviewed. The formulation and process development of hot-melt extrusion was discussed. In Chapter 2, we investigated the use of thin film freezing technology combined with template emulsion system to improve the dissolution and wetting properties of itraconazole (ITZ). The effects of formulation variables (i.e., the selection of polymeric excipients and surfactants) and process variables (i.e., template emulsion system versus cosolvent system) were studied. The physic-chemical properties and dissolution properties of thin film freezing compositions were characterized extensively. In Chapter 3 and Chapter 4, we investigated hot-melt extrusion technology for producing amorphous solid dispersion systems and improving the dissolution and absorption of ITZ. Formulation variables (i.e., the selection of hydrophilic additives, the selection of polymeric carriers) and process variables (i.e., the screw configuration of hot-melt extrusion systems) were investigated in order to optimize the performance of ITZ amorphous solid dispersions. The effects of formulation and process variables on the properties of hot-melt extrusion compositions were investigated. In vivo studies revealed that the oral administration of advanced ITZ amorphous solid dispersion formulations rendered enhanced oral bioavailability of the drug in the rat model. Results indicated that novel formulation and processing technologies are viable approaches for enhancing the oral absorption of poorly water-soluble drugs.

Application of Hot-melt Fluid Bed Coating Process for Controlled Release of Prapanolol Hydrochloride Pellets

Application of Hot-melt Fluid Bed Coating Process for Controlled Release of Prapanolol Hydrochloride Pellets PDF Author: Wanida Pornchaisuree
Publisher:
ISBN:
Category : Coating processes
Languages : en
Pages : 240

Book Description


Excipient Applications in Formulation Design and Drug Delivery

Excipient Applications in Formulation Design and Drug Delivery PDF Author: Ajit S Narang
Publisher: Springer
ISBN: 3319202065
Category : Medical
Languages : en
Pages : 700

Book Description
In recent years, emerging trends in the design and development of drug products have indicated ever greater need for integrated characterization of excipients and in-depth understanding of their roles in drug delivery applications. This book presents a concise summary of relevant scientific and mechanistic information that can aid the use of excipients in formulation design and drug delivery applications. Each chapter is contributed by chosen experts in their respective fields, which affords truly in-depth perspective into a spectrum of excipient-focused topics. This book captures current subjects of interest – with the most up to date research updates – in the field of pharmaceutical excipients. This includes areas of interest to the biopharmaceutical industry users, students, educators, excipient manufacturers, and regulatory bodies alike.