Author:
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 874
Book Description
Research Awards Index
Structure and Function Relationships in Biochemical Systems
Author: Francesco Bossa
Publisher: Springer Science & Business Media
ISBN: 146159281X
Category : Science
Languages : en
Pages : 374
Book Description
Publisher: Springer Science & Business Media
ISBN: 146159281X
Category : Science
Languages : en
Pages : 374
Book Description
Copper Proteins and Copper Enzymes
Author: Rene Lontie
Publisher: CRC Press
ISBN: 1351079352
Category : Medical
Languages : en
Pages : 233
Book Description
These volumes of Copper Proteins and Copper Enzymes are intended to describe the contemporary spectroscopy and other biophysical chemistry now being applied to copper proteins in order to determine the structures of their active sites. Several chapters of the treatise describe the functional understanding which is emerging from the new work. The authors are all major contributors to research progress on copper proteins and the volumes will be found to be definitive and authoritative.
Publisher: CRC Press
ISBN: 1351079352
Category : Medical
Languages : en
Pages : 233
Book Description
These volumes of Copper Proteins and Copper Enzymes are intended to describe the contemporary spectroscopy and other biophysical chemistry now being applied to copper proteins in order to determine the structures of their active sites. Several chapters of the treatise describe the functional understanding which is emerging from the new work. The authors are all major contributors to research progress on copper proteins and the volumes will be found to be definitive and authoritative.
Electron Transfer
Author: Joshua Jortner
Publisher: John Wiley & Sons
ISBN: 0470142189
Category : Science
Languages : en
Pages : 759
Book Description
an integrated approach to electron transfer phenomena This two-part stand-alone volume in the prestigious Advances in Chemical Physics series provides the most comprehensive overview of electron transfer science today. It draws on cutting-edge research from diverse areas of chemistry, physics, and biology-covering the most recent developments in the field, and pointing to important future trends. This initial volume includes: * A historical perspective spanning five decades * A review of concepts, problems, and ideas in current research * Electron transfer in isolated molecules and in clusters * General theory, including useful algorithms * Spectra and electron transfer kinetics in bridged compounds The second volume covers solvent control, ultrafast electron transfer and coherence effects, molecular electronics, electron transfer and chemistry, and biomolecules. Electron transfer science has seen tremendous progress in recent years. Technological innovations, most notably the advent of femtosecond lasers, now permit the real-time investigation of intramolecular and intermolecular electron transfer processes on a time scale of nuclear motion. New scientific information abounds, illuminating the processes of energy acquisition, storage, and disposal in large molecules, clusters, condensed phase, and biophysical systems. Electron Transfer: From Isolated Molecules to Biomolecules is the first book devoted to the exciting work being done in nonradiative electron transfer dynamics today. This two-part edited volume emphasizes the interdisciplinary nature of the field, bringing together the contributions of pioneers in chemistry, physics, and biology. Both theoretical and experimental topics are featured. The authors describe modern approaches to the exploration of different systems, including supersonic beam techniques, femtosecond laser spectroscopy, chemical syntheses, and methods in genetic and chemical engineering. They examine applications in such areas as supersonic jets, solvents, electrodes, semi- conductors, respiratory and enzymatic protein systems, photosynthesis, and more. They also relate electron transfer and radiationless transitions theory to pertinent physical phenomena, and provide a conceptual framework for the different processes. Complete with over two hundred illustrations, Part One reviews developments in the field since its inception fifty years ago, and discusses electron transfer phenomena in both isolated molecules and in clusters. It outlines the general theory, exploring areas of the control of kinetics, structure-function relationships, fluctuations, coherence, and coupling to solvents with complex spectral density in different types of electron transfer processes. Timely, comprehensive, and authoritative, Electron Transfer: From Isolated Molecules to Biomolecules is an essential resource for physical chemists, molecular physicists, and researchers working in nonradiative dynamics today.
Publisher: John Wiley & Sons
ISBN: 0470142189
Category : Science
Languages : en
Pages : 759
Book Description
an integrated approach to electron transfer phenomena This two-part stand-alone volume in the prestigious Advances in Chemical Physics series provides the most comprehensive overview of electron transfer science today. It draws on cutting-edge research from diverse areas of chemistry, physics, and biology-covering the most recent developments in the field, and pointing to important future trends. This initial volume includes: * A historical perspective spanning five decades * A review of concepts, problems, and ideas in current research * Electron transfer in isolated molecules and in clusters * General theory, including useful algorithms * Spectra and electron transfer kinetics in bridged compounds The second volume covers solvent control, ultrafast electron transfer and coherence effects, molecular electronics, electron transfer and chemistry, and biomolecules. Electron transfer science has seen tremendous progress in recent years. Technological innovations, most notably the advent of femtosecond lasers, now permit the real-time investigation of intramolecular and intermolecular electron transfer processes on a time scale of nuclear motion. New scientific information abounds, illuminating the processes of energy acquisition, storage, and disposal in large molecules, clusters, condensed phase, and biophysical systems. Electron Transfer: From Isolated Molecules to Biomolecules is the first book devoted to the exciting work being done in nonradiative electron transfer dynamics today. This two-part edited volume emphasizes the interdisciplinary nature of the field, bringing together the contributions of pioneers in chemistry, physics, and biology. Both theoretical and experimental topics are featured. The authors describe modern approaches to the exploration of different systems, including supersonic beam techniques, femtosecond laser spectroscopy, chemical syntheses, and methods in genetic and chemical engineering. They examine applications in such areas as supersonic jets, solvents, electrodes, semi- conductors, respiratory and enzymatic protein systems, photosynthesis, and more. They also relate electron transfer and radiationless transitions theory to pertinent physical phenomena, and provide a conceptual framework for the different processes. Complete with over two hundred illustrations, Part One reviews developments in the field since its inception fifty years ago, and discusses electron transfer phenomena in both isolated molecules and in clusters. It outlines the general theory, exploring areas of the control of kinetics, structure-function relationships, fluctuations, coherence, and coupling to solvents with complex spectral density in different types of electron transfer processes. Timely, comprehensive, and authoritative, Electron Transfer: From Isolated Molecules to Biomolecules is an essential resource for physical chemists, molecular physicists, and researchers working in nonradiative dynamics today.
Active Site Of Copper Proteins
Author: J. V. Bannister
Publisher: CRC Press
ISBN: 9783718604623
Category : Medical
Languages : en
Pages : 348
Book Description
Publisher: CRC Press
ISBN: 9783718604623
Category : Medical
Languages : en
Pages : 348
Book Description
Investigation of the Electronic and Geometric Structure of Copper-containing Metalloproteins Using X-ray Absorption Spectroscopy : Applications to CuA, Blue Copper, and Multicopper Oxidases
Author: Serena DeBeer George
Publisher:
ISBN:
Category :
Languages : en
Pages : 616
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 616
Book Description
Nuclear Magnetic Resonance of Paramagnetic Macromolecules
Author: G.N. la Mar
Publisher: Springer Science & Business Media
ISBN: 9401585733
Category : Science
Languages : en
Pages : 403
Book Description
Since A. Kowalsky's first report of the spectrum of cytochrome c in 1965, interest in the detection, assignment and interpretation of paramagnetic molecules has surged, especially in the last decade. Two classes of systems have played a key role in the development of the field: heme proteins and iron-sulfur proteins. These two systems are unique in many respects, one of which is that they contain well-defined chromophores, each of which can be studied in detail outside the protein matrix. They are the most successfully studied macromolecules, and the first eight and last six of the seventeen contributions to this book deal with heme and/or iron-sulfur proteins. The middle three chapters survey the progress on, and significant promise of, more difficult systems which do not possess a chromophore, but which have nevertheless yielded remarkable insights into their structure.
Publisher: Springer Science & Business Media
ISBN: 9401585733
Category : Science
Languages : en
Pages : 403
Book Description
Since A. Kowalsky's first report of the spectrum of cytochrome c in 1965, interest in the detection, assignment and interpretation of paramagnetic molecules has surged, especially in the last decade. Two classes of systems have played a key role in the development of the field: heme proteins and iron-sulfur proteins. These two systems are unique in many respects, one of which is that they contain well-defined chromophores, each of which can be studied in detail outside the protein matrix. They are the most successfully studied macromolecules, and the first eight and last six of the seventeen contributions to this book deal with heme and/or iron-sulfur proteins. The middle three chapters survey the progress on, and significant promise of, more difficult systems which do not possess a chromophore, but which have nevertheless yielded remarkable insights into their structure.
Cumulated Index Medicus
Proceedings of the 7th International Conference on X-Ray Absorption Fine Structure, Kobe, Japan, August 23-29, 1992
Author: Haruo Kuroda
Publisher:
ISBN:
Category : Extended X-ray absorption fine structure
Languages : en
Pages : 916
Book Description
Publisher:
ISBN:
Category : Extended X-ray absorption fine structure
Languages : en
Pages : 916
Book Description
Multi-copper Oxidases
Author: Albrecht Messerschmidt
Publisher: World Scientific
ISBN: 9814498807
Category : Science
Languages : en
Pages : 477
Book Description
The biological activation of dioxygen is a key reaction in biological systems. Enzymes involved in direct oxygen activation are oxidases and oxygenases. Multi-copper oxidases are an important class of oxidases reducing dioxygen in a four-electron reduction to water with concomitant one-electron oxidation of the reducing substrate. The progress in the characterization and understanding of the structure and function of these enzymes has advanced so tremendously over the last ten years that the publication of a book documenting these achievements has been overdue.Especially the recent discovery of a key role of the FET3 protein of Saccharomyces cerevisae, a multi-copper oxidase, in iron metabolism of this eukaryote has underpinned the function of the plasma multi-copper oxidase ceruloplasmin in vetebrate iron transport. The lately determined x-ray structure of human ceruloplasmin confirms its close structural relatedness to the plant multi-copper oxidases ascorbate oxidase and laccase and due to strong amino-acid sequence similarities has allowed to construct a useful model of the more distantly related blood-clotting factor VIII.This book contains review articles from experts in the field, dealing with modern spectroscopy, enzyme kinetics, bioinorganic chemistry, x-ray crystallography, electron transfer reactions, molecular biology, medical aspects and potential industrial applications of the three main members of multi-copper oxidases, i.e., laccase, ascorbate oxidase and ceruloplasmin.
Publisher: World Scientific
ISBN: 9814498807
Category : Science
Languages : en
Pages : 477
Book Description
The biological activation of dioxygen is a key reaction in biological systems. Enzymes involved in direct oxygen activation are oxidases and oxygenases. Multi-copper oxidases are an important class of oxidases reducing dioxygen in a four-electron reduction to water with concomitant one-electron oxidation of the reducing substrate. The progress in the characterization and understanding of the structure and function of these enzymes has advanced so tremendously over the last ten years that the publication of a book documenting these achievements has been overdue.Especially the recent discovery of a key role of the FET3 protein of Saccharomyces cerevisae, a multi-copper oxidase, in iron metabolism of this eukaryote has underpinned the function of the plasma multi-copper oxidase ceruloplasmin in vetebrate iron transport. The lately determined x-ray structure of human ceruloplasmin confirms its close structural relatedness to the plant multi-copper oxidases ascorbate oxidase and laccase and due to strong amino-acid sequence similarities has allowed to construct a useful model of the more distantly related blood-clotting factor VIII.This book contains review articles from experts in the field, dealing with modern spectroscopy, enzyme kinetics, bioinorganic chemistry, x-ray crystallography, electron transfer reactions, molecular biology, medical aspects and potential industrial applications of the three main members of multi-copper oxidases, i.e., laccase, ascorbate oxidase and ceruloplasmin.