Inverse Problem Theory and Methods for Model Parameter Estimation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Inverse Problem Theory and Methods for Model Parameter Estimation PDF full book. Access full book title Inverse Problem Theory and Methods for Model Parameter Estimation by Albert Tarantola. Download full books in PDF and EPUB format.

Inverse Problem Theory and Methods for Model Parameter Estimation

Inverse Problem Theory and Methods for Model Parameter Estimation PDF Author: Albert Tarantola
Publisher: SIAM
ISBN: 9780898717921
Category : Mathematics
Languages : en
Pages : 349

Book Description
While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.

Inverse Problem Theory and Methods for Model Parameter Estimation

Inverse Problem Theory and Methods for Model Parameter Estimation PDF Author: Albert Tarantola
Publisher: SIAM
ISBN: 9780898717921
Category : Mathematics
Languages : en
Pages : 349

Book Description
While the prediction of observations is a forward problem, the use of actual observations to infer the properties of a model is an inverse problem. Inverse problems are difficult because they may not have a unique solution. The description of uncertainties plays a central role in the theory, which is based on probability theory. This book proposes a general approach that is valid for linear as well as for nonlinear problems. The philosophy is essentially probabilistic and allows the reader to understand the basic difficulties appearing in the resolution of inverse problems. The book attempts to explain how a method of acquisition of information can be applied to actual real-world problems, and many of the arguments are heuristic.

An Introduction to the Mathematical Theory of Inverse Problems

An Introduction to the Mathematical Theory of Inverse Problems PDF Author: Andreas Kirsch
Publisher: Springer Science & Business Media
ISBN: 1441984747
Category : Mathematics
Languages : en
Pages : 314

Book Description
This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.

Parameter Estimation and Inverse Problems

Parameter Estimation and Inverse Problems PDF Author: Richard C. Aster
Publisher: Elsevier
ISBN: 0128134232
Category : Science
Languages : en
Pages : 406

Book Description
Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner

A Taste of Inverse Problems

A Taste of Inverse Problems PDF Author: Martin Hanke
Publisher: SIAM
ISBN: 1611974933
Category : Mathematics
Languages : en
Pages : 171

Book Description
Inverse problems need to be solved in order to properly interpret indirect measurements. Often, inverse problems are ill-posed and sensitive to data errors. Therefore one has to incorporate some sort of regularization to reconstruct significant information from the given data. A Taste of Inverse Problems: Basic Theory and Examples?presents the main achievements that have emerged in regularization theory over the past 50 years, focusing on linear ill-posed problems and the development of methods that can be applied to them. Some of this material has previously appeared only in journal articles. This book rigorously discusses state-of-the-art inverse problems theory, focusing on numerically relevant aspects and omitting subordinate generalizations; presents diverse real-world applications, important test cases, and possible pitfalls; and treats these applications with the same rigor and depth as the theory.

Computational Methods for Inverse Problems

Computational Methods for Inverse Problems PDF Author: Curtis R. Vogel
Publisher: SIAM
ISBN: 0898717574
Category : Mathematics
Languages : en
Pages : 195

Book Description
Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Geophysical Data Analysis: Discrete Inverse Theory

Geophysical Data Analysis: Discrete Inverse Theory PDF Author: William Menke
Publisher: Academic Press
ISBN: 0323141285
Category : Science
Languages : en
Pages : 273

Book Description
Geophysical Data Analysis: Discrete Inverse Theory is an introductory text focusing on discrete inverse theory that is concerned with parameters that either are truly discrete or can be adequately approximated as discrete. Organized into 12 chapters, the book's opening chapters provide a general background of inverse problems and their corresponding solution, as well as some of the basic concepts from probability theory that are applied throughout the text. Chapters 3-7 discuss the solution of the canonical inverse problem, that is, the linear problem with Gaussian statistics, and discussions on problems that are non-Gaussian and nonlinear are covered in Chapters 8 and 9. Chapters 10-12 present examples of the use of inverse theory and a discussion on the numerical algorithms that must be employed to solve inverse problems on a computer. This book is of value to graduate students and many college seniors in the applied sciences.

Inverse Problems

Inverse Problems PDF Author: Mathias Richter
Publisher: Birkhäuser
ISBN: 3319483846
Category : Mathematics
Languages : en
Pages : 248

Book Description
The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.

The Inverse Problem of Scattering Theory

The Inverse Problem of Scattering Theory PDF Author: Z.S. Agranovich
Publisher: Courier Dover Publications
ISBN: 0486842495
Category : Mathematics
Languages : en
Pages : 307

Book Description
This monograph by two Soviet experts in mathematical physics was a major contribution to inverse scattering theory. The two-part treatment examines the boundary-value problem with and without singularities. 1963 edition.

Mathematical Modelling

Mathematical Modelling PDF Author: Seppo Pohjolainen
Publisher: Springer
ISBN: 3319278363
Category : Mathematics
Languages : en
Pages : 247

Book Description
This book provides a thorough introduction to the challenge of applying mathematics in real-world scenarios. Modelling tasks rarely involve well-defined categories, and they often require multidisciplinary input from mathematics, physics, computer sciences, or engineering. In keeping with this spirit of modelling, the book includes a wealth of cross-references between the chapters and frequently points to the real-world context. The book combines classical approaches to modelling with novel areas such as soft computing methods, inverse problems, and model uncertainty. Attention is also paid to the interaction between models, data and the use of mathematical software. The reader will find a broad selection of theoretical tools for practicing industrial mathematics, including the analysis of continuum models, probabilistic and discrete phenomena, and asymptotic and sensitivity analysis.

Inverse Problems: Tikhonov Theory And Algorithms

Inverse Problems: Tikhonov Theory And Algorithms PDF Author: Kazufumi Ito
Publisher: World Scientific
ISBN: 9814596213
Category : Mathematics
Languages : en
Pages : 330

Book Description
Inverse problems arise in practical applications whenever one needs to deduce unknowns from observables. This monograph is a valuable contribution to the highly topical field of computational inverse problems. Both mathematical theory and numerical algorithms for model-based inverse problems are discussed in detail. The mathematical theory focuses on nonsmooth Tikhonov regularization for linear and nonlinear inverse problems. The computational methods include nonsmooth optimization algorithms, direct inversion methods and uncertainty quantification via Bayesian inference.The book offers a comprehensive treatment of modern techniques, and seamlessly blends regularization theory with computational methods, which is essential for developing accurate and efficient inversion algorithms for many practical inverse problems.It demonstrates many current developments in the field of computational inversion, such as value function calculus, augmented Tikhonov regularization, multi-parameter Tikhonov regularization, semismooth Newton method, direct sampling method, uncertainty quantification and approximate Bayesian inference. It is written for graduate students and researchers in mathematics, natural science and engineering.