Author: George Lusztig
Publisher: Springer Science & Business Media
ISBN: 0817647171
Category : Mathematics
Languages : en
Pages : 361
Book Description
The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.
Introduction to Quantum Groups
Author: George Lusztig
Publisher: Springer Science & Business Media
ISBN: 0817647171
Category : Mathematics
Languages : en
Pages : 361
Book Description
The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.
Publisher: Springer Science & Business Media
ISBN: 0817647171
Category : Mathematics
Languages : en
Pages : 361
Book Description
The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.
Introduction to Quantum Groups and Crystal Bases
Author: Jin Hong
Publisher: American Mathematical Soc.
ISBN: 0821828746
Category : Mathematics
Languages : en
Pages : 327
Book Description
The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.
Publisher: American Mathematical Soc.
ISBN: 0821828746
Category : Mathematics
Languages : en
Pages : 327
Book Description
The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.
Quantum Groups and Their Representations
Author: Anatoli Klimyk
Publisher: Springer Science & Business Media
ISBN: 3642608965
Category : Science
Languages : en
Pages : 568
Book Description
This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.
Publisher: Springer Science & Business Media
ISBN: 3642608965
Category : Science
Languages : en
Pages : 568
Book Description
This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.
Lectures on Quantum Groups
Author: Pavel I. Etingof
Publisher:
ISBN: 9781571462077
Category : Mathematical physics
Languages : en
Pages : 242
Book Description
Publisher:
ISBN: 9781571462077
Category : Mathematical physics
Languages : en
Pages : 242
Book Description
Quantum Groups
Author: Christian Kassel
Publisher: Springer Science & Business Media
ISBN: 1461207835
Category : Mathematics
Languages : en
Pages : 540
Book Description
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
Publisher: Springer Science & Business Media
ISBN: 1461207835
Category : Mathematics
Languages : en
Pages : 540
Book Description
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
A Quantum Groups Primer
Author: Shahn Majid
Publisher: Cambridge University Press
ISBN: 0521010411
Category : Mathematics
Languages : en
Pages : 183
Book Description
Self-contained introduction to quantum groups as algebraic objects, suitable as a textbook for graduate courses.
Publisher: Cambridge University Press
ISBN: 0521010411
Category : Mathematics
Languages : en
Pages : 183
Book Description
Self-contained introduction to quantum groups as algebraic objects, suitable as a textbook for graduate courses.
Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach
Author: L.A. Lambe
Publisher: Springer Science & Business Media
ISBN: 1461541093
Category : Mathematics
Languages : en
Pages : 314
Book Description
Chapter 1 The algebraic prerequisites for the book are covered here and in the appendix. This chapter should be used as reference material and should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in [Sweedler, 1969] in one form or another, with a few exceptions. A great deal of emphasis is placed on the coalgebra which is the dual of n x n matrices over a field. This is the most basic example of a coalgebra for our purposes and is at the heart of most algebraic constructions described in this book. We have found pointed bialgebras useful in connection with solving the quantum Yang-Baxter equation. For this reason we develop their theory in some detail. The class of examples described in Chapter 6 in connection with the quantum double consists of pointed Hopf algebras. We note the quantized enveloping algebras described Hopf algebras. Thus for many reasons pointed bialgebras are elsewhere are pointed of fundamental interest in the study of the quantum Yang-Baxter equation and objects quantum groups.
Publisher: Springer Science & Business Media
ISBN: 1461541093
Category : Mathematics
Languages : en
Pages : 314
Book Description
Chapter 1 The algebraic prerequisites for the book are covered here and in the appendix. This chapter should be used as reference material and should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in [Sweedler, 1969] in one form or another, with a few exceptions. A great deal of emphasis is placed on the coalgebra which is the dual of n x n matrices over a field. This is the most basic example of a coalgebra for our purposes and is at the heart of most algebraic constructions described in this book. We have found pointed bialgebras useful in connection with solving the quantum Yang-Baxter equation. For this reason we develop their theory in some detail. The class of examples described in Chapter 6 in connection with the quantum double consists of pointed Hopf algebras. We note the quantized enveloping algebras described Hopf algebras. Thus for many reasons pointed bialgebras are elsewhere are pointed of fundamental interest in the study of the quantum Yang-Baxter equation and objects quantum groups.
A Guide to Quantum Groups
Author: Vyjayanthi Chari
Publisher: Cambridge University Press
ISBN: 9780521558846
Category : Mathematics
Languages : en
Pages : 672
Book Description
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.
Publisher: Cambridge University Press
ISBN: 9780521558846
Category : Mathematics
Languages : en
Pages : 672
Book Description
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.
Foundations of Quantum Group Theory
Author: Shahn Majid
Publisher: Cambridge University Press
ISBN: 9780521648684
Category : Group theory
Languages : en
Pages : 668
Book Description
A graduate level text which systematically lays out the foundations of Quantum Groups.
Publisher: Cambridge University Press
ISBN: 9780521648684
Category : Group theory
Languages : en
Pages : 668
Book Description
A graduate level text which systematically lays out the foundations of Quantum Groups.
Affine Lie Algebras and Quantum Groups
Author: Jürgen Fuchs
Publisher: Cambridge University Press
ISBN: 9780521484121
Category : Mathematics
Languages : en
Pages : 452
Book Description
This is an introduction to the theory of affine Lie Algebras, to the theory of quantum groups, and to the interrelationships between these two fields that are encountered in conformal field theory.
Publisher: Cambridge University Press
ISBN: 9780521484121
Category : Mathematics
Languages : en
Pages : 452
Book Description
This is an introduction to the theory of affine Lie Algebras, to the theory of quantum groups, and to the interrelationships between these two fields that are encountered in conformal field theory.