Author: Alonzo Church
Publisher: Princeton University Press
ISBN: 9780691029061
Category : Mathematics
Languages : en
Pages : 396
Book Description
A classic account of mathematical logic from a pioneering giant in the field Logic is sometimes called the foundation of mathematics: the logician studies the kinds of reasoning used in the individual steps of a proof. Alonzo Church was a pioneer in the field of mathematical logic, whose contributions to number theory and the theories of algorithms and computability laid the theoretical foundations of computer science. His first Princeton book, The Calculi of Lambda-Conversion (1941), established an invaluable tool that computer scientists still use today. Even beyond the accomplishment of that book, however, his second Princeton book, Introduction to Mathematical Logic, defined its subject for a generation. Originally published in Princeton's Annals of Mathematics Studies series, this book was revised in 1956 and reprinted a third time, in 1996, in the Princeton Landmarks in Mathematics series. Although new results in mathematical logic have been developed and other textbooks have been published, it remains, sixty years later, a basic source for understanding formal logic. Church was one of the principal founders of the Association for Symbolic Logic; he founded the Journal of Symbolic Logic in 1936 and remained an editor until 1979. At his death in 1995, Church was still regarded as the greatest mathematical logician in the world.
Introduction to Mathematical Logic
Author: Alonzo Church
Publisher: Princeton University Press
ISBN: 9780691029061
Category : Mathematics
Languages : en
Pages : 396
Book Description
A classic account of mathematical logic from a pioneering giant in the field Logic is sometimes called the foundation of mathematics: the logician studies the kinds of reasoning used in the individual steps of a proof. Alonzo Church was a pioneer in the field of mathematical logic, whose contributions to number theory and the theories of algorithms and computability laid the theoretical foundations of computer science. His first Princeton book, The Calculi of Lambda-Conversion (1941), established an invaluable tool that computer scientists still use today. Even beyond the accomplishment of that book, however, his second Princeton book, Introduction to Mathematical Logic, defined its subject for a generation. Originally published in Princeton's Annals of Mathematics Studies series, this book was revised in 1956 and reprinted a third time, in 1996, in the Princeton Landmarks in Mathematics series. Although new results in mathematical logic have been developed and other textbooks have been published, it remains, sixty years later, a basic source for understanding formal logic. Church was one of the principal founders of the Association for Symbolic Logic; he founded the Journal of Symbolic Logic in 1936 and remained an editor until 1979. At his death in 1995, Church was still regarded as the greatest mathematical logician in the world.
Publisher: Princeton University Press
ISBN: 9780691029061
Category : Mathematics
Languages : en
Pages : 396
Book Description
A classic account of mathematical logic from a pioneering giant in the field Logic is sometimes called the foundation of mathematics: the logician studies the kinds of reasoning used in the individual steps of a proof. Alonzo Church was a pioneer in the field of mathematical logic, whose contributions to number theory and the theories of algorithms and computability laid the theoretical foundations of computer science. His first Princeton book, The Calculi of Lambda-Conversion (1941), established an invaluable tool that computer scientists still use today. Even beyond the accomplishment of that book, however, his second Princeton book, Introduction to Mathematical Logic, defined its subject for a generation. Originally published in Princeton's Annals of Mathematics Studies series, this book was revised in 1956 and reprinted a third time, in 1996, in the Princeton Landmarks in Mathematics series. Although new results in mathematical logic have been developed and other textbooks have been published, it remains, sixty years later, a basic source for understanding formal logic. Church was one of the principal founders of the Association for Symbolic Logic; he founded the Journal of Symbolic Logic in 1936 and remained an editor until 1979. At his death in 1995, Church was still regarded as the greatest mathematical logician in the world.
Philosophical and Mathematical Logic
Author: Harrie de Swart
Publisher: Springer
ISBN: 3030032558
Category : Philosophy
Languages : en
Pages : 558
Book Description
This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo
Publisher: Springer
ISBN: 3030032558
Category : Philosophy
Languages : en
Pages : 558
Book Description
This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo
A Primer on Mapping Class Groups
Author: Benson Farb
Publisher: Princeton University Press
ISBN: 0691147949
Category : Mathematics
Languages : en
Pages : 490
Book Description
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
Publisher: Princeton University Press
ISBN: 0691147949
Category : Mathematics
Languages : en
Pages : 490
Book Description
The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. A Primer on Mapping Class Groups begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn-Nielsen-Baer theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.
The Metaphysics of Logic
Author: Penelope Rush
Publisher: Cambridge University Press
ISBN: 1316148017
Category : Philosophy
Languages : en
Pages : 279
Book Description
Featuring fourteen new essays from an international team of renowned contributors, this volume explores the key issues, debates and questions in the metaphysics of logic. The book is structured in three parts, looking first at the main positions in the nature of logic, such as realism, pluralism, relativism, objectivity, nihilism, conceptualism, and conventionalism, then focusing on historical topics such as the medieval Aristotelian view of logic, the problem of universals, and Bolzano's logical realism. The final section tackles specific issues such as glutty theories, contradiction, the metaphysical conception of logical truth, and the possible revision of logic. The volume will provide readers with a rich and wide-ranging survey, a valuable digest of the many views in this area, and a long overdue investigation of logic's relationship to us and the world. It will be of interest to a wide range of scholars and students of philosophy, logic, and mathematics.
Publisher: Cambridge University Press
ISBN: 1316148017
Category : Philosophy
Languages : en
Pages : 279
Book Description
Featuring fourteen new essays from an international team of renowned contributors, this volume explores the key issues, debates and questions in the metaphysics of logic. The book is structured in three parts, looking first at the main positions in the nature of logic, such as realism, pluralism, relativism, objectivity, nihilism, conceptualism, and conventionalism, then focusing on historical topics such as the medieval Aristotelian view of logic, the problem of universals, and Bolzano's logical realism. The final section tackles specific issues such as glutty theories, contradiction, the metaphysical conception of logical truth, and the possible revision of logic. The volume will provide readers with a rich and wide-ranging survey, a valuable digest of the many views in this area, and a long overdue investigation of logic's relationship to us and the world. It will be of interest to a wide range of scholars and students of philosophy, logic, and mathematics.
A Course in Mathematical Logic for Mathematicians
Author: Yu. I. Manin
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Proofs from THE BOOK
Author: Martin Aigner
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194
Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Publisher: Springer Science & Business Media
ISBN: 3662223430
Category : Mathematics
Languages : en
Pages : 194
Book Description
According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Wittgenstein on Mathematics
Author: Severin Schroeder
Publisher: Routledge
ISBN: 100031829X
Category : Philosophy
Languages : en
Pages : 200
Book Description
This book offers a detailed account and discussion of Ludwig Wittgenstein’s philosophy of mathematics. In Part I, the stage is set with a brief presentation of Frege’s logicist attempt to provide arithmetic with a foundation and Wittgenstein’s criticisms of it, followed by sketches of Wittgenstein’s early views of mathematics, in the Tractatus and in the early 1930s. Then (in Part II), Wittgenstein’s mature philosophy of mathematics (1937-44) is carefully presented and examined. Schroeder explains that it is based on two key ideas: the calculus view and the grammar view. On the one hand, mathematics is seen as a human activity — calculation — rather than a theory. On the other hand, the results of mathematical calculations serve as grammatical norms. The following chapters (on mathematics as grammar; rule-following; conventionalism; the empirical basis of mathematics; the role of proof) explore the tension between those two key ideas and suggest a way in which it can be resolved. Finally, there are chapters analysing and defending Wittgenstein’s provocative views on Hilbert’s Formalism and the quest for consistency proofs and on Gödel’s incompleteness theorems.
Publisher: Routledge
ISBN: 100031829X
Category : Philosophy
Languages : en
Pages : 200
Book Description
This book offers a detailed account and discussion of Ludwig Wittgenstein’s philosophy of mathematics. In Part I, the stage is set with a brief presentation of Frege’s logicist attempt to provide arithmetic with a foundation and Wittgenstein’s criticisms of it, followed by sketches of Wittgenstein’s early views of mathematics, in the Tractatus and in the early 1930s. Then (in Part II), Wittgenstein’s mature philosophy of mathematics (1937-44) is carefully presented and examined. Schroeder explains that it is based on two key ideas: the calculus view and the grammar view. On the one hand, mathematics is seen as a human activity — calculation — rather than a theory. On the other hand, the results of mathematical calculations serve as grammatical norms. The following chapters (on mathematics as grammar; rule-following; conventionalism; the empirical basis of mathematics; the role of proof) explore the tension between those two key ideas and suggest a way in which it can be resolved. Finally, there are chapters analysing and defending Wittgenstein’s provocative views on Hilbert’s Formalism and the quest for consistency proofs and on Gödel’s incompleteness theorems.
Proceedings
Author: Industrial Engineering Institute
Publisher:
ISBN:
Category : Industrial management
Languages : en
Pages : 650
Book Description
Publisher:
ISBN:
Category : Industrial management
Languages : en
Pages : 650
Book Description
A Brief History of Analytic Philosophy
Author: Stephen P. Schwartz
Publisher: John Wiley & Sons
ISBN: 1118271726
Category : Philosophy
Languages : en
Pages : 367
Book Description
A Brief History of Analytic Philosophy: From Russell to Rawls presents a comprehensive overview of the historical development of all major aspects of analytic philosophy, the dominant Anglo-American philosophical tradition in the twentieth century. Features coverage of all the major subject areas and figures in analytic philosophy - including Wittgenstein, Bertrand Russell, G.E. Moore, Gottlob Frege, Carnap, Quine, Davidson, Kripke, Putnam, and many others Contains explanatory background material to help make clear technical philosophical concepts Includes listings of suggested further readings Written in a clear, direct style that presupposes little previous knowledge of philosophy
Publisher: John Wiley & Sons
ISBN: 1118271726
Category : Philosophy
Languages : en
Pages : 367
Book Description
A Brief History of Analytic Philosophy: From Russell to Rawls presents a comprehensive overview of the historical development of all major aspects of analytic philosophy, the dominant Anglo-American philosophical tradition in the twentieth century. Features coverage of all the major subject areas and figures in analytic philosophy - including Wittgenstein, Bertrand Russell, G.E. Moore, Gottlob Frege, Carnap, Quine, Davidson, Kripke, Putnam, and many others Contains explanatory background material to help make clear technical philosophical concepts Includes listings of suggested further readings Written in a clear, direct style that presupposes little previous knowledge of philosophy
Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets, Volume I
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 3038973858
Category : Mathematics
Languages : en
Pages : 480
Book Description
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (,, ), where is an entity (i.e., element, concept, idea, theory, logical proposition, etc.), is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor . Based on neutrosophy, the neutrosophic triplets were founded; they have a similar form: (x, neut(x), anti(x), that satisfy some axioms, for each element x in a given set. This book contains the successful invited submissions to a special issue of Symmetry, reporting on state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets, and their algebraic structures—that have been defined recently in 2016, but have gained interest from world researchers, and several papers have been published in first rank international journals.
Publisher: Infinite Study
ISBN: 3038973858
Category : Mathematics
Languages : en
Pages : 480
Book Description
Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (,