Intracellular Protein Degradation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Intracellular Protein Degradation PDF full book. Access full book title Intracellular Protein Degradation by A.J. Rivett. Download full books in PDF and EPUB format.

Intracellular Protein Degradation

Intracellular Protein Degradation PDF Author: A.J. Rivett
Publisher: Elsevier Science
ISBN: 9780762303878
Category : Science
Languages : en
Pages : 0

Book Description
This volume brings together a set of reviews that provide a summary of our current knowledge of the proteolytic machinery and of the pathways of protein breakdown of prokaryotic and eukaryotic cells. Intracellular protein degradation is much more than just a mechanism for the removal of incorrectly folded or damaged proteins. Since many short-lived proteins have important regulatory functions, proteolysis makes a significant contribution to many cellular processes including cell cycle regulation and transciptional control. In addition, limited proteolytic cleavage can provide a rapid and efficient mechanism of enzyme activation or inactivation in eukaryotic cells. In the first chapter, Maurizi provides an introduction to intracellular protein degradation, describes the structure and functions of bacterial ATP-dependent proteases, and explores the relationship between chaperone functions and protein degradation. Many of the principles also apply to eukaryotic cells, although the proteases involved are often not the same. Interestingly, homologues of one of the bacterial proteases, Ion protease, have been found in mitochondria in yeast and mammals, and homologues of proteasomes, which are found in all eukaryotic cells (see below), have been discovered in some eubacteria. Studies of proteolysis in yeast have contributed greatly to the elucidation of both lysosomal (vacuolar) and nonlysosomal proteolytic pathways in eukaryotic cells. Thumm and Wolf (chapter 2) describe studies that have elucidated the functions of proteasomes in nonlysosomal proteolysis and the contributions of lysosomal proteases to intracellular protein breakdown. Proteins can be selected for degradation by a variety of differen mechanisms. The ubiquitin system is one complex and highly regulated mechanism by which eukaryotic proteins are targetted for degradation by proteosomes. In chapter 3, Wilkinson reviews the components and functions of the ubiquitin system and considers some of the known substrates for this pathway which include cell cycle and transcriptional regulators. The structure and functions of proteosomes and their regulatory components are described in the two subsequent chapters by Tanaka and Tanahashi and by Dubiel and Rechsteiner. Proteasomes were the first known example of threonine proteases. They are multisubunit complexes that, in addition to being responsible for the turnover of most short-lived nuclear and cytoplasmic protein, are also involved in antigen processing for presentation by the MHC class I pathway. Recent studies reviewed by McCracken and colleagues (chapter 6) lead to the exciting conclusion that some ER-associated proteins are degraded by cytosolic proteasomes. Lysosomes are responsible for the degradation of long-lived proteins and for the enhanced protein degradation observed under starvation conditions. In chapter 7 Knecht and colleagues review the lysosomal proteases and describe studies of the roles of lysosomes and the mechanisms for protein uptake into lysosomes. Methods of measuring the relative contribution of different proteolytic systems (e.g., ubiquitin-proteasome pathway, calcium-dependent proteases, lysosomes) to muscle protein degradation, and the conclusions from such studies, are reviewed by Attai and Taillinder in the following chapter. Finally, proteases play an important role in signaling apoptosis by catalyzing the limited cleavage of enzymes. Mason and Beyette review the role of the major players, caspases, which are both activated by and catalyze limite proteolysis, and also consider the involvement of other protoelytic enzymes in this pathway leading cell death.

Intracellular Protein Degradation

Intracellular Protein Degradation PDF Author: A.J. Rivett
Publisher: Elsevier Science
ISBN: 9780762303878
Category : Science
Languages : en
Pages : 0

Book Description
This volume brings together a set of reviews that provide a summary of our current knowledge of the proteolytic machinery and of the pathways of protein breakdown of prokaryotic and eukaryotic cells. Intracellular protein degradation is much more than just a mechanism for the removal of incorrectly folded or damaged proteins. Since many short-lived proteins have important regulatory functions, proteolysis makes a significant contribution to many cellular processes including cell cycle regulation and transciptional control. In addition, limited proteolytic cleavage can provide a rapid and efficient mechanism of enzyme activation or inactivation in eukaryotic cells. In the first chapter, Maurizi provides an introduction to intracellular protein degradation, describes the structure and functions of bacterial ATP-dependent proteases, and explores the relationship between chaperone functions and protein degradation. Many of the principles also apply to eukaryotic cells, although the proteases involved are often not the same. Interestingly, homologues of one of the bacterial proteases, Ion protease, have been found in mitochondria in yeast and mammals, and homologues of proteasomes, which are found in all eukaryotic cells (see below), have been discovered in some eubacteria. Studies of proteolysis in yeast have contributed greatly to the elucidation of both lysosomal (vacuolar) and nonlysosomal proteolytic pathways in eukaryotic cells. Thumm and Wolf (chapter 2) describe studies that have elucidated the functions of proteasomes in nonlysosomal proteolysis and the contributions of lysosomal proteases to intracellular protein breakdown. Proteins can be selected for degradation by a variety of differen mechanisms. The ubiquitin system is one complex and highly regulated mechanism by which eukaryotic proteins are targetted for degradation by proteosomes. In chapter 3, Wilkinson reviews the components and functions of the ubiquitin system and considers some of the known substrates for this pathway which include cell cycle and transcriptional regulators. The structure and functions of proteosomes and their regulatory components are described in the two subsequent chapters by Tanaka and Tanahashi and by Dubiel and Rechsteiner. Proteasomes were the first known example of threonine proteases. They are multisubunit complexes that, in addition to being responsible for the turnover of most short-lived nuclear and cytoplasmic protein, are also involved in antigen processing for presentation by the MHC class I pathway. Recent studies reviewed by McCracken and colleagues (chapter 6) lead to the exciting conclusion that some ER-associated proteins are degraded by cytosolic proteasomes. Lysosomes are responsible for the degradation of long-lived proteins and for the enhanced protein degradation observed under starvation conditions. In chapter 7 Knecht and colleagues review the lysosomal proteases and describe studies of the roles of lysosomes and the mechanisms for protein uptake into lysosomes. Methods of measuring the relative contribution of different proteolytic systems (e.g., ubiquitin-proteasome pathway, calcium-dependent proteases, lysosomes) to muscle protein degradation, and the conclusions from such studies, are reviewed by Attai and Taillinder in the following chapter. Finally, proteases play an important role in signaling apoptosis by catalyzing the limited cleavage of enzymes. Mason and Beyette review the role of the major players, caspases, which are both activated by and catalyze limite proteolysis, and also consider the involvement of other protoelytic enzymes in this pathway leading cell death.

Intracellular Protein Degradation

Intracellular Protein Degradation PDF Author: A.J. Rivett
Publisher: Elsevier Science
ISBN: 9780762303878
Category : Science
Languages : en
Pages : 0

Book Description
This volume brings together a set of reviews that provide a summary of our current knowledge of the proteolytic machinery and of the pathways of protein breakdown of prokaryotic and eukaryotic cells. Intracellular protein degradation is much more than just a mechanism for the removal of incorrectly folded or damaged proteins. Since many short-lived proteins have important regulatory functions, proteolysis makes a significant contribution to many cellular processes including cell cycle regulation and transciptional control. In addition, limited proteolytic cleavage can provide a rapid and efficient mechanism of enzyme activation or inactivation in eukaryotic cells. In the first chapter, Maurizi provides an introduction to intracellular protein degradation, describes the structure and functions of bacterial ATP-dependent proteases, and explores the relationship between chaperone functions and protein degradation. Many of the principles also apply to eukaryotic cells, although the proteases involved are often not the same. Interestingly, homologues of one of the bacterial proteases, Ion protease, have been found in mitochondria in yeast and mammals, and homologues of proteasomes, which are found in all eukaryotic cells (see below), have been discovered in some eubacteria. Studies of proteolysis in yeast have contributed greatly to the elucidation of both lysosomal (vacuolar) and nonlysosomal proteolytic pathways in eukaryotic cells. Thumm and Wolf (chapter 2) describe studies that have elucidated the functions of proteasomes in nonlysosomal proteolysis and the contributions of lysosomal proteases to intracellular protein breakdown. Proteins can be selected for degradation by a variety of differen mechanisms. The ubiquitin system is one complex and highly regulated mechanism by which eukaryotic proteins are targetted for degradation by proteosomes. In chapter 3, Wilkinson reviews the components and functions of the ubiquitin system and considers some of the known substrates for this pathway which include cell cycle and transcriptional regulators. The structure and functions of proteosomes and their regulatory components are described in the two subsequent chapters by Tanaka and Tanahashi and by Dubiel and Rechsteiner. Proteasomes were the first known example of threonine proteases. They are multisubunit complexes that, in addition to being responsible for the turnover of most short-lived nuclear and cytoplasmic protein, are also involved in antigen processing for presentation by the MHC class I pathway. Recent studies reviewed by McCracken and colleagues (chapter 6) lead to the exciting conclusion that some ER-associated proteins are degraded by cytosolic proteasomes. Lysosomes are responsible for the degradation of long-lived proteins and for the enhanced protein degradation observed under starvation conditions. In chapter 7 Knecht and colleagues review the lysosomal proteases and describe studies of the roles of lysosomes and the mechanisms for protein uptake into lysosomes. Methods of measuring the relative contribution of different proteolytic systems (e.g., ubiquitin-proteasome pathway, calcium-dependent proteases, lysosomes) to muscle protein degradation, and the conclusions from such studies, are reviewed by Attai and Taillinder in the following chapter. Finally, proteases play an important role in signaling apoptosis by catalyzing the limited cleavage of enzymes. Mason and Beyette review the role of the major players, caspases, which are both activated by and catalyze limite proteolysis, and also consider the involvement of other protoelytic enzymes in this pathway leading cell death.

Intracellular Protein Degradation

Intracellular Protein Degradation PDF Author: Fergus J. Doherty
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 84

Book Description
Protein degradation is important in the control of intracellular concentrations of key regulatory enzymes and other proteins. This book describes the mechanisms of intracellular protein degradation at the molecular and cell biological levels including: kinetics of protein degradation,lysosomes, cystosolic proteases, the ubiquitin pathway, molecular determinants of protein half-line, and protein degradation in disease.

Intracellular Protein Degradation

Intracellular Protein Degradation PDF Author: Mark Hochstrasser
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Book Description


Determinants of Intracellular Protein Degradation

Determinants of Intracellular Protein Degradation PDF Author: Dawn Alea Parsell
Publisher:
ISBN:
Category :
Languages : en
Pages : 394

Book Description


Intracellular Protein Degradation and the Ubiquitin Protein System

Intracellular Protein Degradation and the Ubiquitin Protein System PDF Author: Meenakshi Agrawal
Publisher:
ISBN:
Category :
Languages : en
Pages : 45

Book Description


Stress-Inducible Cellular Responses

Stress-Inducible Cellular Responses PDF Author: U. Feige
Publisher: Birkhäuser
ISBN: 3034890885
Category : Science
Languages : en
Pages : 487

Book Description
This book will deal with heat shock proteins and more generally with stress-related inducible gene expression as a pleiotropic adaptive response to stress. It presents a textbook-like overview of the field not only to heat shock experts, but to physiologists, pharmacologists, physicians, neuropsychologists and others as well. It is intended to be a state-of-the-art and perspective book rather than an up-to-date presentation of recent data. It should provide a basis for new experimetal approaches to fields at the edge of the classical heat shock field. Drugs, UV irradiation and environmental toxics will be considered as important modulators of the stress response. Radical scavengers such as superoxide dismutases and inducible regulatory proteins of metallic ion status such as ferritin as well as immunophilins and protein disulfide isomerases will be considered within the frame of stress proteins. The potential practical applications of heat shock proteins in toxicology and medicine for the diagnosis, prognosis and eventually therapy of clinical conditions associated with an increased oxidative burden will be outlined. The role of heat shock proteins in the modulation of immune responses will also be included. The book considers heat shock from a broad perspective including fields for which heat-shock may become of importance in the very near future such as cellular responses to environmental stresses and complex stress responses under specific conditions. It was also felt timely to incorporate a whole section on medical and technological applications of stress proteins. The book will be invaluable for all those working on stress and is intended for every "stress laboratory" as a source of knowledge and perspectives.

EJB Reviews

EJB Reviews PDF Author: P. Christen
Publisher: Springer Science & Business Media
ISBN: 3642852521
Category : Science
Languages : en
Pages : 282

Book Description
In the mid-1980s the European Journal of Biochemistry set out to publish review articles. The enterprise proved successful, resulting in high-level reviews written by well-known scientists appearing in the Journal. The reviews represent emerging and rapidly growing fields of research in fundamental as well as applied areas of biochemistry, such as medicine, biotechnology, agriculture and nutrition. Novel methodological and technological approaches which stimulate biochemical research are also included. The authors of the reviews are explicitly asked to be critical, selective, evaluative and interdisciplinary oriented. The reviews should encourage young scientists to think independently and creatively, and inform active investigators about the state of the art in a given field.

Current Trends in the Study of Intracellular Protein Degradation

Current Trends in the Study of Intracellular Protein Degradation PDF Author: Erwin Knecht
Publisher:
ISBN:
Category : Proteins
Languages : en
Pages : 546

Book Description


Lysosomal Pathways of Protein Degradation

Lysosomal Pathways of Protein Degradation PDF Author: J Fred Dice
Publisher: CRC Press
ISBN: 149871305X
Category : Science
Languages : en
Pages : 106

Book Description
Lysosomal Pathways of Protein Degradation looks at cell biology from the view of a lysosome. It summarizes the composition and assembly of lysosomes in mammalian and yeast cells. It also reviews current knowledge about pathways of endocytosis and secretion and how both endocytosed and secreted proteins can be delivered to lysosomes for degradation.