Interpolation Spaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Interpolation Spaces PDF full book. Access full book title Interpolation Spaces by J. Bergh. Download full books in PDF and EPUB format.

Interpolation Spaces

Interpolation Spaces PDF Author: J. Bergh
Publisher: Springer Science & Business Media
ISBN: 3642664512
Category : Mathematics
Languages : en
Pages : 218

Book Description
The works of Jaak Peetre constitute the main body of this treatise. Important contributors are also J. L. Lions and A. P. Calderon, not to mention several others. We, the present authors, have thus merely compiled and explained the works of others (with the exception of a few minor contributions of our own). Let us mention the origin of this treatise. A couple of years ago, J. Peetre suggested to the second author, J. Lofstrom, writing a book on interpolation theory and he most generously put at Lofstrom's disposal an unfinished manu script, covering parts of Chapter 1-3 and 5 of this book. Subsequently, LOfstrom prepared a first rough, but relatively complete manuscript of lecture notes. This was then partly rewritten and thouroughly revised by the first author, J. Bergh, who also prepared the notes and comment and most of the exercises. Throughout the work, we have had the good fortune of enjoying Jaak Peetre's kind patronage and invaluable counsel. We want to express our deep gratitude to him. Thanks are also due to our colleagues for their support and help. Finally, we are sincerely grateful to Boe1 Engebrand, Lena Mattsson and Birgit Hoglund for their expert typing of our manuscript.

Interpolation Spaces

Interpolation Spaces PDF Author: J. Bergh
Publisher: Springer Science & Business Media
ISBN: 3642664512
Category : Mathematics
Languages : en
Pages : 218

Book Description
The works of Jaak Peetre constitute the main body of this treatise. Important contributors are also J. L. Lions and A. P. Calderon, not to mention several others. We, the present authors, have thus merely compiled and explained the works of others (with the exception of a few minor contributions of our own). Let us mention the origin of this treatise. A couple of years ago, J. Peetre suggested to the second author, J. Lofstrom, writing a book on interpolation theory and he most generously put at Lofstrom's disposal an unfinished manu script, covering parts of Chapter 1-3 and 5 of this book. Subsequently, LOfstrom prepared a first rough, but relatively complete manuscript of lecture notes. This was then partly rewritten and thouroughly revised by the first author, J. Bergh, who also prepared the notes and comment and most of the exercises. Throughout the work, we have had the good fortune of enjoying Jaak Peetre's kind patronage and invaluable counsel. We want to express our deep gratitude to him. Thanks are also due to our colleagues for their support and help. Finally, we are sincerely grateful to Boe1 Engebrand, Lena Mattsson and Birgit Hoglund for their expert typing of our manuscript.

Interpolation Spaces and Related Topics

Interpolation Spaces and Related Topics PDF Author: Michael Cwikel
Publisher:
ISBN:
Category : Interpolation
Languages : en
Pages : 316

Book Description


An Introduction to Sobolev Spaces and Interpolation Spaces

An Introduction to Sobolev Spaces and Interpolation Spaces PDF Author: Luc Tartar
Publisher: Springer Science & Business Media
ISBN: 3540714839
Category : Mathematics
Languages : en
Pages : 219

Book Description
After publishing an introduction to the Navier–Stokes equation and oceanography (Vol. 1 of this series), Luc Tartar follows with another set of lecture notes based on a graduate course in two parts, as indicated by the title. A draft has been available on the internet for a few years. The author has now revised and polished it into a text accessible to a larger audience.

Function Spaces, Interpolation Spaces, and Related Topics

Function Spaces, Interpolation Spaces, and Related Topics PDF Author: Michael Cwikel
Publisher:
ISBN:
Category : Function spaces
Languages : en
Pages : 244

Book Description
This volume presents the proceedings of the international workshop held at the Technion-Israel Institute of Technology. Included are research and survey articles on interpolation theory and function spaces.

Function Spaces, Interpolation Theory and Related Topics

Function Spaces, Interpolation Theory and Related Topics PDF Author: Michael Cwikel
Publisher: Walter de Gruyter
ISBN: 3110198053
Category : Mathematics
Languages : en
Pages : 473

Book Description
This volume contains 16 refereed research articles on function spaces, interpolation theory and related fields. Topics covered: theory of function spaces, Hankel-type and related operators, analysis on bounded symmetric domains, partial differential equations, Green functions, special functions, homogenization theory, Sobolev embeddings, Coxeter groups, spectral theory and wavelets. The book will be of interest to both researchers and graduate students working in interpolation theory, function spaces and operators, partial differential equations and analysis on bounded symmetric domains.

Interpolation Functors and Interpolation Spaces

Interpolation Functors and Interpolation Spaces PDF Author:
Publisher: Elsevier
ISBN: 0080887104
Category : Mathematics
Languages : en
Pages : 735

Book Description
The theory of interpolation spaces has its origin in the classical work of Riesz and Marcinkiewicz but had its first flowering in the years around 1960 with the pioneering work of Aronszajn, Calderón, Gagliardo, Krein, Lions and a few others. It is interesting to note that what originally triggered off this avalanche were concrete problems in the theory of elliptic boundary value problems related to the scale of Sobolev spaces. Later on, applications were found in many other areas of mathematics: harmonic analysis, approximation theory, theoretical numerical analysis, geometry of Banach spaces, nonlinear functional analysis, etc. Besides this the theory has a considerable internal beauty and must by now be regarded as an independent branch of analysis, with its own problems and methods. Further development in the 1970s and 1980s included the solution by the authors of this book of one of the outstanding questions in the theory of the real method, the K-divisibility problem. In a way, this book harvests the results of that solution, as well as drawing heavily on a classic paper by Aronszajn and Gagliardo, which appeared in 1965 but whose real importance was not realized until a decade later. This includes a systematic use of the language, if not the theory, of categories. In this way the book also opens up many new vistas which still have to be explored. This volume is the first of three planned books. Volume II will deal with the complex method, while Volume III will deal with applications.

Interpolation and Sampling in Spaces of Analytic Functions

Interpolation and Sampling in Spaces of Analytic Functions PDF Author: Kristian Seip
Publisher: American Mathematical Soc.
ISBN: 0821835548
Category : Mathematics
Languages : en
Pages : 153

Book Description
Based on a series of six lectures given by the author at the University of Michigan, this book is intended as an introduction to the topic of interpolation and sampling in analytic function spaces. The three major topics covered are Nevanlinna-Pick interpolation, Carleson's interpolation theorem, an

Pick Interpolation and Hilbert Function Spaces

Pick Interpolation and Hilbert Function Spaces PDF Author: Jim Agler
Publisher: American Mathematical Society
ISBN: 1470468557
Category : Mathematics
Languages : en
Pages : 330

Book Description
The book first rigorously develops the theory of reproducing kernel Hilbert spaces. The authors then discuss the Pick problem of finding the function of smallest $H^infty$ norm that has specified values at a finite number of points in the disk. Their viewpoint is to consider $H^infty$ as the multiplier algebra of the Hardy space and to use Hilbert space techniques to solve the problem. This approach generalizes to a wide collection of spaces. The authors then consider the interpolation problem in the space of bounded analytic functions on the bidisk and give a complete description of the solution. They then consider very general interpolation problems. The book includes developments of all the theory that is needed, including operator model theory, the Arveson extension theorem, and the hereditary functional calculus.

Weighted Sobolev Spaces

Weighted Sobolev Spaces PDF Author: Alois Kufner
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 130

Book Description
A systematic account of the subject, this book deals with properties and applications of the Sobolev spaces with weights, the weight function being dependent on the distance of a point of the definition domain from the boundary of the domain or from its parts. After an introduction of definitions, examples and auxilliary results, it describes the study of properties of Sobolev spaces with power-type weights, and analogous problems for weights of a more general type. The concluding chapter addresses applications of weighted spaces to the solution of the Dirichlet problem for an elliptic linear differential operator.

Non-Homogeneous Boundary Value Problems and Applications

Non-Homogeneous Boundary Value Problems and Applications PDF Author: Jacques Louis Lions
Publisher: Springer Science & Business Media
ISBN: 3642651615
Category : Mathematics
Languages : en
Pages : 375

Book Description
1. We describe, at first in a very formaI manner, our essential aim. n Let m be an op en subset of R , with boundary am. In m and on am we introduce, respectively, linear differential operators P and Qj' 0 ~ i ~ 'V. By "non-homogeneous boundary value problem" we mean a problem of the following type: let f and gj' 0 ~ i ~ 'v, be given in function space s F and G , F being a space" on m" and the G/ s spaces" on am" ; j we seek u in a function space u/t "on m" satisfying (1) Pu = f in m, (2) Qju = gj on am, 0 ~ i ~ 'v«])). Qj may be identically zero on part of am, so that the number of boundary conditions may depend on the part of am considered 2. We take as "working hypothesis" that, for fEF and gjEG , j the problem (1), (2) admits a unique solution u E U/t, which depends 3 continuously on the data . But for alllinear probIems, there is a large number of choiees for the space s u/t and {F; G} (naturally linke d together). j Generally speaking, our aim is to determine families of spaces 'ft and {F; G}, associated in a "natural" way with problem (1), (2) and con j venient for applications, and also all possible choiees for u/t and {F; G} j in these families.