Author: Bernold Fiedler
Publisher: World Scientific
ISBN: 9789810249885
Category : Differential equations
Languages : en
Pages : 846
Book Description
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences
International Conference on Differential Equations, Berlin, Germany, 1-7 August, 1999
Author: Bernold Fiedler
Publisher: World Scientific
ISBN: 9789810249885
Category : Differential equations
Languages : en
Pages : 846
Book Description
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences
Publisher: World Scientific
ISBN: 9789810249885
Category : Differential equations
Languages : en
Pages : 846
Book Description
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences
Equadiff 99 (In 2 Volumes) - Proceedings Of The International Conference On Differential Equations
Author: Bernold Fiedler
Publisher: World Scientific
ISBN: 9814522163
Category : Mathematics
Languages : en
Pages : 838
Book Description
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences.
Publisher: World Scientific
ISBN: 9814522163
Category : Mathematics
Languages : en
Pages : 838
Book Description
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences.
Numerical Methods for Nonlinear Elliptic Differential Equations
Author: Klaus Boehmer
Publisher: OUP Oxford
ISBN: 0191574473
Category : Science
Languages : en
Pages : 776
Book Description
Nonlinear elliptic problems play an increasingly important role in mathematics, science and engineering, creating an exciting interplay between the subjects. This is the first and only book to prove in a systematic and unifying way, stability, convergence and computing results for the different numerical methods for nonlinear elliptic problems. The proofs use linearization, compact perturbation of the coercive principal parts, or monotone operator techniques, and approximation theory. Examples are given for linear to fully nonlinear problems (highest derivatives occur nonlinearly) and for the most important space discretization methods: conforming and nonconforming finite element, discontinuous Galerkin, finite difference, wavelet (and, in a volume to follow, spectral and meshfree) methods. A number of specific long open problems are solved here: numerical methods for fully nonlinear elliptic problems, wavelet and meshfree methods for nonlinear problems, and more general nonlinear boundary conditions. We apply it to all these problems and methods, in particular to eigenvalues, monotone operators, quadrature approximations, and Newton methods. Adaptivity is discussed for finite element and wavelet methods. The book has been written for graduate students and scientists who want to study and to numerically analyze nonlinear elliptic differential equations in Mathematics, Science and Engineering. It can be used as material for graduate courses or advanced seminars.
Publisher: OUP Oxford
ISBN: 0191574473
Category : Science
Languages : en
Pages : 776
Book Description
Nonlinear elliptic problems play an increasingly important role in mathematics, science and engineering, creating an exciting interplay between the subjects. This is the first and only book to prove in a systematic and unifying way, stability, convergence and computing results for the different numerical methods for nonlinear elliptic problems. The proofs use linearization, compact perturbation of the coercive principal parts, or monotone operator techniques, and approximation theory. Examples are given for linear to fully nonlinear problems (highest derivatives occur nonlinearly) and for the most important space discretization methods: conforming and nonconforming finite element, discontinuous Galerkin, finite difference, wavelet (and, in a volume to follow, spectral and meshfree) methods. A number of specific long open problems are solved here: numerical methods for fully nonlinear elliptic problems, wavelet and meshfree methods for nonlinear problems, and more general nonlinear boundary conditions. We apply it to all these problems and methods, in particular to eigenvalues, monotone operators, quadrature approximations, and Newton methods. Adaptivity is discussed for finite element and wavelet methods. The book has been written for graduate students and scientists who want to study and to numerically analyze nonlinear elliptic differential equations in Mathematics, Science and Engineering. It can be used as material for graduate courses or advanced seminars.
Patterns of Dynamics
Author: Pavel Gurevich
Publisher: Springer
ISBN: 3319641735
Category : Mathematics
Languages : en
Pages : 411
Book Description
Theoretical advances in dynamical-systems theory and their applications to pattern-forming processes in the sciences and engineering are discussed in this volume that resulted from the conference Patterns in Dynamics held in honor of Bernold Fiedler, in Berlin, July 25-29, 2016.The contributions build and develop mathematical techniques, and use mathematical approaches for prediction and control of complex systems. The underlying mathematical theories help extract structures from experimental observations and, conversely, shed light on the formation, dynamics, and control of spatio-temporal patterns in applications. Theoretical areas covered include geometric analysis, spatial dynamics, spectral theory, traveling-wave theory, and topological data analysis; also discussed are their applications to chemotaxis, self-organization at interfaces, neuroscience, and transport processes.
Publisher: Springer
ISBN: 3319641735
Category : Mathematics
Languages : en
Pages : 411
Book Description
Theoretical advances in dynamical-systems theory and their applications to pattern-forming processes in the sciences and engineering are discussed in this volume that resulted from the conference Patterns in Dynamics held in honor of Bernold Fiedler, in Berlin, July 25-29, 2016.The contributions build and develop mathematical techniques, and use mathematical approaches for prediction and control of complex systems. The underlying mathematical theories help extract structures from experimental observations and, conversely, shed light on the formation, dynamics, and control of spatio-temporal patterns in applications. Theoretical areas covered include geometric analysis, spatial dynamics, spectral theory, traveling-wave theory, and topological data analysis; also discussed are their applications to chemotaxis, self-organization at interfaces, neuroscience, and transport processes.
Analysis and Applications - ISAAC 2001
Author: Heinrich G.W. Begehr
Publisher: Springer Science & Business Media
ISBN: 1475737416
Category : Mathematics
Languages : en
Pages : 316
Book Description
This collection of survey articles gives and idea of new methods and results in real and complex analysis and its applications. Besides several chapters on hyperbolic equations and systems and complex analysis, potential theory, dynamical systems and harmonic analysis are also included. Newly developed subjects from power geometry, homogenization, partial differential equations in graph structures are presented and a decomposition of the Hilbert space and Hamiltonian are given. Audience: Advanced students and scientists interested in new methods and results in analysis and applications.
Publisher: Springer Science & Business Media
ISBN: 1475737416
Category : Mathematics
Languages : en
Pages : 316
Book Description
This collection of survey articles gives and idea of new methods and results in real and complex analysis and its applications. Besides several chapters on hyperbolic equations and systems and complex analysis, potential theory, dynamical systems and harmonic analysis are also included. Newly developed subjects from power geometry, homogenization, partial differential equations in graph structures are presented and a decomposition of the Hilbert space and Hamiltonian are given. Audience: Advanced students and scientists interested in new methods and results in analysis and applications.
Monotone Random Systems Theory and Applications
Author: Igor Chueshov
Publisher: Springer
ISBN: 3540458158
Category : Mathematics
Languages : en
Pages : 239
Book Description
The aim of this book is to present a recently developed approach suitable for investigating a variety of qualitative aspects of order-preserving random dynamical systems and to give the background for further development of the theory. The main objects considered are equilibria and attractors. The effectiveness of this approach is demonstrated by analysing the long-time behaviour of some classes of random and stochastic ordinary differential equations which arise in many applications.
Publisher: Springer
ISBN: 3540458158
Category : Mathematics
Languages : en
Pages : 239
Book Description
The aim of this book is to present a recently developed approach suitable for investigating a variety of qualitative aspects of order-preserving random dynamical systems and to give the background for further development of the theory. The main objects considered are equilibria and attractors. The effectiveness of this approach is demonstrated by analysing the long-time behaviour of some classes of random and stochastic ordinary differential equations which arise in many applications.
Nonlinear PDEs
Author: Guido Schneider
Publisher: American Mathematical Soc.
ISBN: 1470436132
Category : Mathematics
Languages : en
Pages : 593
Book Description
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.
Publisher: American Mathematical Soc.
ISBN: 1470436132
Category : Mathematics
Languages : en
Pages : 593
Book Description
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.
Applied Mechanics Reviews
Biometrics: Concepts, Methodologies, Tools, and Applications
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1522509844
Category : Social Science
Languages : en
Pages : 1887
Book Description
Security and authentication issues are surging to the forefront of the research realm in global society. As technology continues to evolve, individuals are finding it easier to infiltrate various forums and facilities where they can illegally obtain information and access. By implementing biometric authentications to these forums, users are able to prevent attacks on their privacy and security. Biometrics: Concepts, Methodologies, Tools, and Applications is a multi-volume publication highlighting critical topics related to access control, user identification, and surveillance technologies. Featuring emergent research on the issues and challenges in security and privacy, various forms of user authentication, biometric applications to image processing and computer vision, and security applications within the field, this publication is an ideal reference source for researchers, engineers, technology developers, students, and security specialists.
Publisher: IGI Global
ISBN: 1522509844
Category : Social Science
Languages : en
Pages : 1887
Book Description
Security and authentication issues are surging to the forefront of the research realm in global society. As technology continues to evolve, individuals are finding it easier to infiltrate various forums and facilities where they can illegally obtain information and access. By implementing biometric authentications to these forums, users are able to prevent attacks on their privacy and security. Biometrics: Concepts, Methodologies, Tools, and Applications is a multi-volume publication highlighting critical topics related to access control, user identification, and surveillance technologies. Featuring emergent research on the issues and challenges in security and privacy, various forms of user authentication, biometric applications to image processing and computer vision, and security applications within the field, this publication is an ideal reference source for researchers, engineers, technology developers, students, and security specialists.
Numerical Solution of Partial Differential Equations on Parallel Computers
Author: Are Magnus Bruaset
Publisher: Springer Science & Business Media
ISBN: 3540316191
Category : Mathematics
Languages : en
Pages : 491
Book Description
Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.
Publisher: Springer Science & Business Media
ISBN: 3540316191
Category : Mathematics
Languages : en
Pages : 491
Book Description
Since the dawn of computing, the quest for a better understanding of Nature has been a driving force for technological development. Groundbreaking achievements by great scientists have paved the way from the abacus to the supercomputing power of today. When trying to replicate Nature in the computer’s silicon test tube, there is need for precise and computable process descriptions. The scienti?c ?elds of Ma- ematics and Physics provide a powerful vehicle for such descriptions in terms of Partial Differential Equations (PDEs). Formulated as such equations, physical laws can become subject to computational and analytical studies. In the computational setting, the equations can be discreti ed for ef?cient solution on a computer, leading to valuable tools for simulation of natural and man-made processes. Numerical so- tion of PDE-based mathematical models has been an important research topic over centuries, and will remain so for centuries to come. In the context of computer-based simulations, the quality of the computed results is directly connected to the model’s complexity and the number of data points used for the computations. Therefore, computational scientists tend to ?ll even the largest and most powerful computers they can get access to, either by increasing the si e of the data sets, or by introducing new model terms that make the simulations more realistic, or a combination of both. Today, many important simulation problems can not be solved by one single computer, but calls for parallel computing.