Interface Formation and Thin Film Deposition for Molecular and Organic Electronics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Interface Formation and Thin Film Deposition for Molecular and Organic Electronics PDF full book. Access full book title Interface Formation and Thin Film Deposition for Molecular and Organic Electronics by Aravind Srinivasa Killampalli. Download full books in PDF and EPUB format.

Interface Formation and Thin Film Deposition for Molecular and Organic Electronics

Interface Formation and Thin Film Deposition for Molecular and Organic Electronics PDF Author: Aravind Srinivasa Killampalli
Publisher:
ISBN:
Category :
Languages : en
Pages : 608

Book Description


Interface Formation and Thin Film Deposition for Molecular and Organic Electronics

Interface Formation and Thin Film Deposition for Molecular and Organic Electronics PDF Author: Aravind Srinivasa Killampalli
Publisher:
ISBN:
Category :
Languages : en
Pages : 608

Book Description


Nanoscale Interface For Organic Electronics

Nanoscale Interface For Organic Electronics PDF Author: Young-soo Kwon
Publisher: World Scientific
ISBN: 9814464112
Category : Technology & Engineering
Languages : en
Pages : 387

Book Description
The scope of this book will be focused on the interface issues and problems in organic materials as electronic device applications. The organic material electronics is a rapidly progressing field for potential applications in flexible field effect transistors, plastic solar cells, organic luminescent devices, etc.However, the performance of these organic devices is still not sufficient. To enhance the understanding and practical applications of organic devices, we need to understand the fundamental organic device physics which is somewhat different from the conventional inorganic device physics. This book will discuss the detailed progress in these topics.

Organic Electronics

Organic Electronics PDF Author: Hagen Klauk
Publisher: John Wiley & Sons
ISBN: 3527608621
Category : Technology & Engineering
Languages : en
Pages : 446

Book Description
Edited and written by the leading researchers and engineers from such companies as Philips, 3M, Xerox, Infineon, PlasticLogic, Eastman Kodak, Dupont, AIXTRON, and Hueck Folien, this book presents unrivalled and undiluted expertise from those who know best how to assess the risks, opportunities and where this technology is really heading. As such, this practical approach complements the more scientific and fundamentals-oriented literature on the market by providing readers with a first-hand insight into industrial activities to commercialize organic electronics. Following an introduction to the topic, including the history, motivation, benefits and potentials, it reviews recent advances and covers all three important facets of organic electronics: the chemical compounds and materials, manufacturing techniques, and the resulting devices together with their current applications.

Interface Controlled Organic Thin Films

Interface Controlled Organic Thin Films PDF Author: Horst-Günter Rubahn
Publisher: Springer Science & Business Media
ISBN: 3540959300
Category : Technology & Engineering
Languages : en
Pages : 208

Book Description
Organic semiconductors are a central topic of advanced materials research. The book is aiming at bridging the gap between the development and production of devices and basic research on thin film characterisation using cutting-edge techniques in surface and interface science. Topics involve organic molecular-based sensors; interfaces in organic diodes and transistors; mobility in organic field effect transistors and space charge problems; integration of optoelectronic nanostructures; nonlinear optical properties of organic nanostructures; the wetting layer problem; how to get from functionalized molecules to nanoaggregates; optical, electrical and mechanical properties of organic nanofibers as well; as near field investigations of organic thin films.

Handbook of Deposition Technologies for Films and Coatings

Handbook of Deposition Technologies for Films and Coatings PDF Author: Peter M. Martin
Publisher: William Andrew
ISBN: 0815520328
Category : Technology & Engineering
Languages : en
Pages : 932

Book Description
This 3e, edited by Peter M. Martin, PNNL 2005 Inventor of the Year, is an extensive update of the many improvements in deposition technologies, mechanisms, and applications. This long-awaited revision includes updated and new chapters on atomic layer deposition, cathodic arc deposition, sculpted thin films, polymer thin films and emerging technologies. Extensive material was added throughout the book, especially in the areas concerned with plasma-assisted vapor deposition processes and metallurgical coating applications.

Physical and Chemical Aspects of Organic Electronics

Physical and Chemical Aspects of Organic Electronics PDF Author: Christof Wöll
Publisher: John Wiley & Sons
ISBN: 3527627391
Category : Science
Languages : en
Pages : 698

Book Description
Organic molecules are currently being investigated with regard to their application as active components in semiconductor devices. Whereas devices containing organic molecules for the generation of light - organic light emitting diodes (OLED) - have already reached the market (they e.g. display information on mobile phones), transistors where organic molecules are used to actively control currents and voltages are still in the development stage. In this book the principle problems related to using organic materials as semiconductors and to construct functioning devices will be addressed. A particular emphasis will be put on the difference between inorganic semiconductors such as Si, Ge and GaAs and organic semiconductors (OSC). The special properties of such soft matter require particular approaches for processing characterization and device implementation, which are quite different from the approach used for conventional semiconductors.

Organic Electronics

Organic Electronics PDF Author: Stephen R. Forrest
Publisher: Oxford University Press, USA
ISBN: 0198529724
Category : Science
Languages : en
Pages : 1068

Book Description
This textbook provides a basic understanding of the principles of the field of organic electronics through to their applications in organic devices. Useful for the student and practitioner, it is both a teaching text and a resource that is a jumping-off point for learning, working and innovating in this rapidly growing field.--Provided by publisher.

Molecular Beam Epitaxy

Molecular Beam Epitaxy PDF Author: Mohamed Henini
Publisher: Elsevier
ISBN: 0128121378
Category : Science
Languages : en
Pages : 790

Book Description
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community

Proceedings of the Tenth International Workshop on the Physics of Semiconductor Devices : (December 14 - 18, 1999) [New Delhi]. 2(2000)

Proceedings of the Tenth International Workshop on the Physics of Semiconductor Devices : (December 14 - 18, 1999) [New Delhi]. 2(2000) PDF Author:
Publisher: Allied Publishers
ISBN: 9788170239987
Category :
Languages : en
Pages : 800

Book Description


Electronic Structure of ?-Conjugated Materials and Their Effect on Organic Photovoltaics

Electronic Structure of ?-Conjugated Materials and Their Effect on Organic Photovoltaics PDF Author: Chuanfei Wang
Publisher: Linköping University Electronic Press
ISBN: 9176853934
Category :
Languages : en
Pages : 102

Book Description
The great tunability of structure and electronic properties of ?-conjugated organic molecules/polymers combined with other advantages such as light weight and flexibility etc., have made organic-based electronics the focus of an exciting still-growing field of physics and chemistry for more than half a century. The application of organic electronics has led to the appearance of wide range of organic electronic devices mainly including organic light emitting diodes (OLED), organic field effect transistors (OFET) and organic solar cells (OSC). The application of the organic electronic devices mainly is limited by two dominant parameters, i.e., their performance and stability. Up to date, OLED has been successfully commercialized in the market while the OSC are still on the way to commercialization hindered by low efficiency and inferior stability. Understanding the energy levels of organic materials and energy level alignment of the devices is crucial to control the efficiency and stability of the OSC. In this thesis, energy levels measured by different methods are studied to explore their relationship with device properties, and the strategies on how to design efficient and stable OSC based on energy level diagrams are provided. Cyclic Voltammetry (CV) is a traditional and widely used method to probe the energy levels of organic materials, although there is little consensus on how to relate the oxidation/reduction potential ((Eox/Ered) to the vacuum level. Ultraviolet Photoelectron Spectroscopy (UPS) can be used to directly detect vertical ionization potential (IP) of organic materials. In this thesis, a linear relationship of IP and Eox was found, with a slope equal to unity. The relationship provides for easy conversion of values obtained by the two techniques, enabling complementarily use in designing and fabricating efficient and stable OSC. A popular rule of thumb is that the offset between the LUMO levels of donor and acceptor should be 0.3 eV, according to which a binary solar cell with the minimum voltage losses around 0.49 V was designed here. Introduction of the ternary blend as active layer is an efficient way to improve both efficiency and stability of the OSC. Based on our studied energy-level diagram within the integer charge transfer (ICT) model, we designed ternary solar cells with enhanced open circuit voltage for the first time and improved thermal stability compared to reference binary ones. The ternary solar cell with minimum voltage losses was developed by combining two donor materials with same ionization potential and positive ICT energy while featuring complementary optical absorption. Furthermore, the fullerene acceptor was chosen so that the energy of the positive ICT state of the two donor polymers is equal to the energy of negative ICT state of the fullerene, which can enhance dissociation of all polymer donor and fullerene acceptor excitons and suppress bimolecular and trap-assistant recombination. Rapid development of non-fullerene acceptors in the last two years affords more recipes of designing both efficient and stabile OSC. We show in this thesis how non-fullerene acceptors successfully can be used to design ternary solar cells with both enhanced efficiency and thermal stability. Besides improving the efficiency of the devices, understanding of the stability and degradation mechanism is another key issue. The degradation of conjugated molecules/polymers often follow many complicated pathways and at the same time many factors for degradation are coupled with each other. Therefore, the degradation of non-fullerene acceptors was investigated in darkness by photoelectron spectroscopy in this thesis with the in-situ method of controlling exposure of O2 and water vapor separately.