Author: Dierk Schröder
Publisher: Springer Science & Business Media
ISBN: 3662041170
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
This application-oriented monograph focuses on a novel and complex type of control systems. Written on an engineering level, including fundamentals, advanced methods and applications, the book applies techniques originating from new methods such as artificial intelligence, fuzzy logic, neural networks etc.
Intelligent Observer and Control Design for Nonlinear Systems
Author: Dierk Schröder
Publisher: Springer Science & Business Media
ISBN: 3662041170
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
This application-oriented monograph focuses on a novel and complex type of control systems. Written on an engineering level, including fundamentals, advanced methods and applications, the book applies techniques originating from new methods such as artificial intelligence, fuzzy logic, neural networks etc.
Publisher: Springer Science & Business Media
ISBN: 3662041170
Category : Technology & Engineering
Languages : en
Pages : 346
Book Description
This application-oriented monograph focuses on a novel and complex type of control systems. Written on an engineering level, including fundamentals, advanced methods and applications, the book applies techniques originating from new methods such as artificial intelligence, fuzzy logic, neural networks etc.
Observer Design for Nonlinear Systems
Author: Pauline Bernard
Publisher: Springer
ISBN: 3030111466
Category : Technology & Engineering
Languages : en
Pages : 185
Book Description
Observer Design for Nonlinear Systems deals with the design of observers for the large class of nonlinear continuous-time models. It contains a unified overview of a broad range of general designs, including the most recent results and their proofs, such as the homogeneous and nonlinear Luenberger design techniques. The book starts from the observation that most observer designs consist in looking for a reversible change of coordinates transforming the expression of the system dynamics into some specific structures, called normal forms, for which an observer is known. Therefore, the problem of observer design is broken down into three sub-problems: • What are the available normal forms and their associated observers?• Under which conditions can a system be transformed into one of these forms and through which transformation? • How can an inverse transformation that recovers an estimate in the given initial coordinates be achieved? This organisation allows the book to structure results within a united framework, highlighting the importance of the choice of the observer coordinates for nonlinear systems. In particular, the first part covers state-affine forms with their Luenberger or Kalman designs, and triangular forms with their homogeneous high-gain designs. The second part addresses the transformation into linear forms through linearization by output injection or in the context of a nonlinear Luenberger design, and into triangular forms under the well-known uniform and differential observability assumptions. Finally, the third part presents some recently developed methods for avoiding the numerically challenging inversion of the transformation. Observer Design for Nonlinear Systems addresses students and researchers looking for an introduction to or an overview of the state of the art in observer design for nonlinear continuous-time dynamical systems. The book gathers the most important results focusing on a large and diffuse literature on general observer designs with global convergence, and is a valuable source of information for academics and practitioners.
Publisher: Springer
ISBN: 3030111466
Category : Technology & Engineering
Languages : en
Pages : 185
Book Description
Observer Design for Nonlinear Systems deals with the design of observers for the large class of nonlinear continuous-time models. It contains a unified overview of a broad range of general designs, including the most recent results and their proofs, such as the homogeneous and nonlinear Luenberger design techniques. The book starts from the observation that most observer designs consist in looking for a reversible change of coordinates transforming the expression of the system dynamics into some specific structures, called normal forms, for which an observer is known. Therefore, the problem of observer design is broken down into three sub-problems: • What are the available normal forms and their associated observers?• Under which conditions can a system be transformed into one of these forms and through which transformation? • How can an inverse transformation that recovers an estimate in the given initial coordinates be achieved? This organisation allows the book to structure results within a united framework, highlighting the importance of the choice of the observer coordinates for nonlinear systems. In particular, the first part covers state-affine forms with their Luenberger or Kalman designs, and triangular forms with their homogeneous high-gain designs. The second part addresses the transformation into linear forms through linearization by output injection or in the context of a nonlinear Luenberger design, and into triangular forms under the well-known uniform and differential observability assumptions. Finally, the third part presents some recently developed methods for avoiding the numerically challenging inversion of the transformation. Observer Design for Nonlinear Systems addresses students and researchers looking for an introduction to or an overview of the state of the art in observer design for nonlinear continuous-time dynamical systems. The book gathers the most important results focusing on a large and diffuse literature on general observer designs with global convergence, and is a valuable source of information for academics and practitioners.
Observer Design for Nonlinear Dynamical Systems
Author: Driss Boutat
Publisher: Springer
ISBN: 9783030737412
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms. The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented. Observer Design for Nonlinear Dynamical Systems will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems.
Publisher: Springer
ISBN: 9783030737412
Category : Technology & Engineering
Languages : en
Pages : 192
Book Description
This book presents a differential geometric method for designing nonlinear observers for multiple types of nonlinear systems, including single and multiple outputs, fully and partially observable systems, and regular and singular dynamical systems. It is an exposition of achievements in nonlinear observer normal forms. The book begins by discussing linear systems, introducing the concept of observability and observer design, and then explains the difficulty of those problems for nonlinear systems. After providing foundational information on the differential geometric method, the text shows how to use the method to address observer design problems. It presents methods for a variety of systems. The authors employ worked examples to illustrate the ideas presented. Observer Design for Nonlinear Dynamical Systems will be of interest to researchers, graduate students, and industrial professionals working with control of mechanical and dynamical systems.
Disturbance Observer-Based Control
Author: Shihua Li
Publisher: CRC Press
ISBN: 1466515805
Category : Computers
Languages : en
Pages : 342
Book Description
Due to its abilities to compensate disturbances and uncertainties, disturbance observer based control (DOBC) is regarded as one of the most promising approaches for disturbance-attenuation. One of the first books on DOBC, Disturbance Observer Based Control: Methods and Applications presents novel theory results as well as best practices for applica
Publisher: CRC Press
ISBN: 1466515805
Category : Computers
Languages : en
Pages : 342
Book Description
Due to its abilities to compensate disturbances and uncertainties, disturbance observer based control (DOBC) is regarded as one of the most promising approaches for disturbance-attenuation. One of the first books on DOBC, Disturbance Observer Based Control: Methods and Applications presents novel theory results as well as best practices for applica
High-Gain Observers in Nonlinear Feedback Control
Author: Hassan H. Khalil
Publisher: SIAM
ISBN: 1611974852
Category : Mathematics
Languages : en
Pages : 330
Book Description
For over a quarter of a century, high-gain observers have been used extensively in the design of output feedback control of nonlinear systems. This book presents a clear, unified treatment of the theory of high-gain observers and their use in feedback control. Also provided is a discussion of the separation principle for nonlinear systems; this differs from other separation results in the literature in that recovery of stability as well as performance of state feedback controllers is given. The author provides a detailed discussion of applications of high-gain observers to adaptive control and regulation problems and recent results on the extended high-gain observers. In addition, the author addresses two challenges that face the implementation of high-gain observers: high dimension and measurement noise. Low-power observers are presented for high-dimensional systems. The effect of measurement noise is characterized and techniques to reduce that effect are presented. The book ends with discussion of digital implementation of the observers. Readers will find comprehensive coverage of the main results on high-gain observers; rigorous, self-contained proofs of all results; and numerous examples that illustrate and provide motivation for the results. The book is intended for engineers and applied mathematicians who design or research feedback control systems.
Publisher: SIAM
ISBN: 1611974852
Category : Mathematics
Languages : en
Pages : 330
Book Description
For over a quarter of a century, high-gain observers have been used extensively in the design of output feedback control of nonlinear systems. This book presents a clear, unified treatment of the theory of high-gain observers and their use in feedback control. Also provided is a discussion of the separation principle for nonlinear systems; this differs from other separation results in the literature in that recovery of stability as well as performance of state feedback controllers is given. The author provides a detailed discussion of applications of high-gain observers to adaptive control and regulation problems and recent results on the extended high-gain observers. In addition, the author addresses two challenges that face the implementation of high-gain observers: high dimension and measurement noise. Low-power observers are presented for high-dimensional systems. The effect of measurement noise is characterized and techniques to reduce that effect are presented. The book ends with discussion of digital implementation of the observers. Readers will find comprehensive coverage of the main results on high-gain observers; rigorous, self-contained proofs of all results; and numerous examples that illustrate and provide motivation for the results. The book is intended for engineers and applied mathematicians who design or research feedback control systems.
Design of Interpretable Fuzzy Systems
Author: Krzysztof Cpałka
Publisher: Springer
ISBN: 3319528815
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.
Publisher: Springer
ISBN: 3319528815
Category : Technology & Engineering
Languages : en
Pages : 203
Book Description
This book shows that the term “interpretability” goes far beyond the concept of readability of a fuzzy set and fuzzy rules. It focuses on novel and precise operators of aggregation, inference, and defuzzification leading to flexible Mamdani-type and logical-type systems that can achieve the required accuracy using a less complex rule base. The individual chapters describe various aspects of interpretability, including appropriate selection of the structure of a fuzzy system, focusing on improving the interpretability of fuzzy systems designed using both gradient-learning and evolutionary algorithms. It also demonstrates how to eliminate various system components, such as inputs, rules and fuzzy sets, whose reduction does not adversely affect system accuracy. It illustrates the performance of the developed algorithms and methods with commonly used benchmarks. The book provides valuable tools for possible applications in many fields including expert systems, automatic control and robotics.
Artificial Intelligence and Soft Computing
Author: Leszek Rutkowski
Publisher: Springer
ISBN: 364238658X
Category : Computers
Languages : en
Pages : 657
Book Description
The two-volume set LNAI 7894 and LNCS 7895 constitutes the refereed proceedings of the 12th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2013, held in Zakopane, Poland in June 2013. The 112 revised full papers presented together with one invited paper were carefully reviewed and selected from 274 submissions. The 57 papers included in the first volume are organized in the following topical sections: neural networks and their applications; fuzzy systems and their applications; pattern classification; and computer vision, image and speech analysis.
Publisher: Springer
ISBN: 364238658X
Category : Computers
Languages : en
Pages : 657
Book Description
The two-volume set LNAI 7894 and LNCS 7895 constitutes the refereed proceedings of the 12th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2013, held in Zakopane, Poland in June 2013. The 112 revised full papers presented together with one invited paper were carefully reviewed and selected from 274 submissions. The 57 papers included in the first volume are organized in the following topical sections: neural networks and their applications; fuzzy systems and their applications; pattern classification; and computer vision, image and speech analysis.
From System Complexity to Emergent Properties
Author: Moulay Aziz-Alaoui
Publisher: Springer Science & Business Media
ISBN: 3642021999
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
Emergence and complexity refer to the appearance of higher-level properties and behaviours of a system that obviously comes from the collective dynamics of that system's components. These properties are not directly deducible from the lower-level motion of that system. Emergent properties are properties of the "whole'' that are not possessed by any of the individual parts making up that whole. Such phenomena exist in various domains and can be described, using complexity concepts and thematic knowledges. This book highlights complexity modelling through dynamical or behavioral systems. The pluridisciplinary purposes, developed along the chapters, are able to design links between a wide-range of fundamental and applicative Sciences. Developing such links - instead of focusing on specific and narrow researches - is characteristic of the Science of Complexity that we try to promote by this contribution.
Publisher: Springer Science & Business Media
ISBN: 3642021999
Category : Technology & Engineering
Languages : en
Pages : 365
Book Description
Emergence and complexity refer to the appearance of higher-level properties and behaviours of a system that obviously comes from the collective dynamics of that system's components. These properties are not directly deducible from the lower-level motion of that system. Emergent properties are properties of the "whole'' that are not possessed by any of the individual parts making up that whole. Such phenomena exist in various domains and can be described, using complexity concepts and thematic knowledges. This book highlights complexity modelling through dynamical or behavioral systems. The pluridisciplinary purposes, developed along the chapters, are able to design links between a wide-range of fundamental and applicative Sciences. Developing such links - instead of focusing on specific and narrow researches - is characteristic of the Science of Complexity that we try to promote by this contribution.
Computational Intelligence in Automotive Applications
Author: Danil Prokhorov
Publisher: Springer
ISBN: 3540792570
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
What is computational intelligence (CI)? Traditionally, CI is understood as a collection of methods from the ?elds of neural networks (NN), fuzzy logic and evolutionary computation. Various de?nitions and opinions exist, but what belongs to CI is still being debated; see, e.g., [1–3]. More recently there has been a proposal to de?ne the CI not in terms of the tools but in terms of challenging problems to be solved [4]. With this edited volume I have made an attempt to give a representative sample of contemporary CI activities in automotive applications to illustrate the state of the art. While CI researchand achievements in some specialized ?elds described (see, e.g., [5, 6]), this is the ?rst volume of its kind dedicated to automotive technology. As if re?ecting the general lack of consensus on what constitutes the ?eld of CI, this volume 1 illustrates automotive applications of not only neural and fuzzy computations which are considered to be the “standard” CI topics, but also others, such as decision trees, graphicalmodels, Support Vector Machines (SVM), multi-agent systems, etc. This book is neither an introductory text, nor a comprehensive overview of all CI research in this area. Hopefully, as a broad and representative sample of CI activities in automotive applications, it will be worth reading for both professionals and students. When the details appear insu?cient, the reader is encouraged to consult other relevant sources provided by the chapter authors.
Publisher: Springer
ISBN: 3540792570
Category : Technology & Engineering
Languages : en
Pages : 288
Book Description
What is computational intelligence (CI)? Traditionally, CI is understood as a collection of methods from the ?elds of neural networks (NN), fuzzy logic and evolutionary computation. Various de?nitions and opinions exist, but what belongs to CI is still being debated; see, e.g., [1–3]. More recently there has been a proposal to de?ne the CI not in terms of the tools but in terms of challenging problems to be solved [4]. With this edited volume I have made an attempt to give a representative sample of contemporary CI activities in automotive applications to illustrate the state of the art. While CI researchand achievements in some specialized ?elds described (see, e.g., [5, 6]), this is the ?rst volume of its kind dedicated to automotive technology. As if re?ecting the general lack of consensus on what constitutes the ?eld of CI, this volume 1 illustrates automotive applications of not only neural and fuzzy computations which are considered to be the “standard” CI topics, but also others, such as decision trees, graphicalmodels, Support Vector Machines (SVM), multi-agent systems, etc. This book is neither an introductory text, nor a comprehensive overview of all CI research in this area. Hopefully, as a broad and representative sample of CI activities in automotive applications, it will be worth reading for both professionals and students. When the details appear insu?cient, the reader is encouraged to consult other relevant sources provided by the chapter authors.
Artificial Intelligence, Expert Systems & Symbolic Computing
Author: E.N. Houstis
Publisher: Elsevier
ISBN: 044459888X
Category : Computers
Languages : en
Pages : 471
Book Description
This volume contains papers in the areas of artificial intelligence, expert systems, symbolic computing and applications to scientific computing. Together, they provide an excellent overview of the dynamic state of these closely related fields. They reveal a future where scientific computation will increasingly involve symbolic and artificial intelligence tools as these software systems become more sophisticated; also a future where systems of computational science and engineering will be problem solving environments created with components from numerical analysis, computational geometry, symbolic computing and artificial intelligence.
Publisher: Elsevier
ISBN: 044459888X
Category : Computers
Languages : en
Pages : 471
Book Description
This volume contains papers in the areas of artificial intelligence, expert systems, symbolic computing and applications to scientific computing. Together, they provide an excellent overview of the dynamic state of these closely related fields. They reveal a future where scientific computation will increasingly involve symbolic and artificial intelligence tools as these software systems become more sophisticated; also a future where systems of computational science and engineering will be problem solving environments created with components from numerical analysis, computational geometry, symbolic computing and artificial intelligence.