Integrability Theorems for Trigonometric Transforms PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Integrability Theorems for Trigonometric Transforms PDF full book. Access full book title Integrability Theorems for Trigonometric Transforms by Ralph P.Jr. Boas. Download full books in PDF and EPUB format.

Integrability Theorems for Trigonometric Transforms

Integrability Theorems for Trigonometric Transforms PDF Author: Ralph P.Jr. Boas
Publisher: Springer Science & Business Media
ISBN: 3642871089
Category : Mathematics
Languages : en
Pages : 71

Book Description
This monograph is areport on the present state of a fairly coherent collection of problems about which a sizeable literature has grown up in recent years. In this literature, some of the problems have, as it happens, been analyzed in great detail, whereas other very similar ones have been treated much more superficially. I have not attempted to improve on the literature by making equally detailed presentations of every topic. I have also not aimed at encyclopedic completeness. I have, however, pointed out some possible generalizations by stating a number of questions; some of these could doubtless be disposed of in a few minutes; some are probably quite difficult. This monograph was written at the suggestion of B. SZ.-NAGY. I take this opportunity of pointing out that his paper [1] inspired the greater part of the material that is presented here; in particular, it contains the happy idea of focusing Y attention on the multipliers nY-i, x- . R. ASKEY, P. HEYWOOD, M. and S. IZUMI, and S. WAINGER have kindly communicated some of their recent results to me before publication. I am indebted for help on various points to L. S. BOSANQUET, S. M. EDMONDS, G. GOES, S. IZUMI, A. ZYGMUND, and especially to R. ASKEY. My work was supported by the National Science Foundation under grants GP-314, GP-2491, GP-3940 and GP-5558. Evanston, Illinois, February, 1967 R. P. Boas, Jr. Contents Notations ... § 1. Introduetion 3 §2. Lemmas .. 7 § 3. Theorems with positive or decreasing functions .

Integrability Theorems for Trigonometric Transforms

Integrability Theorems for Trigonometric Transforms PDF Author: Ralph P.Jr. Boas
Publisher: Springer Science & Business Media
ISBN: 3642871089
Category : Mathematics
Languages : en
Pages : 71

Book Description
This monograph is areport on the present state of a fairly coherent collection of problems about which a sizeable literature has grown up in recent years. In this literature, some of the problems have, as it happens, been analyzed in great detail, whereas other very similar ones have been treated much more superficially. I have not attempted to improve on the literature by making equally detailed presentations of every topic. I have also not aimed at encyclopedic completeness. I have, however, pointed out some possible generalizations by stating a number of questions; some of these could doubtless be disposed of in a few minutes; some are probably quite difficult. This monograph was written at the suggestion of B. SZ.-NAGY. I take this opportunity of pointing out that his paper [1] inspired the greater part of the material that is presented here; in particular, it contains the happy idea of focusing Y attention on the multipliers nY-i, x- . R. ASKEY, P. HEYWOOD, M. and S. IZUMI, and S. WAINGER have kindly communicated some of their recent results to me before publication. I am indebted for help on various points to L. S. BOSANQUET, S. M. EDMONDS, G. GOES, S. IZUMI, A. ZYGMUND, and especially to R. ASKEY. My work was supported by the National Science Foundation under grants GP-314, GP-2491, GP-3940 and GP-5558. Evanston, Illinois, February, 1967 R. P. Boas, Jr. Contents Notations ... § 1. Introduetion 3 §2. Lemmas .. 7 § 3. Theorems with positive or decreasing functions .

The Stone-Čech Compactification

The Stone-Čech Compactification PDF Author: R.C. Walker
Publisher: Springer Science & Business Media
ISBN: 3642619355
Category : Science
Languages : en
Pages : 344

Book Description
Recent research has produced a large number of results concerning the Stone-Cech compactification or involving it in a central manner. The goal of this volume is to make many of these results easily accessible by collecting them in a single source together with the necessary introductory material. The author's interest in this area had its origin in his fascination with the classic text Rings of Continuous Functions by Leonard Gillman and Meyer Jerison. This excellent synthesis of algebra and topology appeared in 1960 and did much to draw attention to the Stone-Cech compactification {3X as a tool to investigate the relationships between a space X and the rings C(X) and C*(X) of real-valued continuous functions. Although in the approach taken here {3X is viewed as the object of study rather than as a tool, the influence of Rings of Continuous Functions is clearly evident. Three introductory chapters make the book essentially self-contained and the exposition suitable for the student who has completed a first course in topology at the graduate level. The development of the Stone Cech compactification and the more specialized topological prerequisites are presented in the first chapter. The necessary material on Boolean algebras, including the Stone Representation Theorem, is developed in Chapter 2. A very basic introduction to category theory is presented in the beginning of Chapter 10 and the remainder of the chapter is an introduction to the methods of categorical topology as it relates to the Stone-Cech compactification.

Embeddings and Extensions in Analysis

Embeddings and Extensions in Analysis PDF Author: J.H. Wells
Publisher: Springer Science & Business Media
ISBN: 3642660371
Category : Mathematics
Languages : en
Pages : 117

Book Description
The object of this book is a presentation of the major results relating to two geometrically inspired problems in analysis. One is that of determining which metric spaces can be isometrically embedded in a Hilbert space or, more generally, P in an L space; the other asks for conditions on a pair of metric spaces which will ensure that every contraction or every Lipschitz-Holder map from a subset of X into Y is extendable to a map of the same type from X into Y. The initial work on isometric embedding was begun by K. Menger [1928] with his metric investigations of Euclidean geometries and continued, in its analytical formulation, by I. J. Schoenberg [1935] in a series of papers of classical elegance. The problem of extending Lipschitz-Holder and contraction maps was first treated by E. J. McShane and M. D. Kirszbraun [1934]. Following a period of relative inactivity, attention was again drawn to these two problems by G. Minty's work on non-linear monotone operators in Hilbert space [1962]; by S. Schonbeck's fundamental work in characterizing those pairs (X,Y) of Banach spaces for which extension of contractions is always possible [1966]; and by the generalization of many of Schoenberg's embedding theorems to the P setting of L spaces by Bretagnolle, Dachuna Castelle and Krivine [1966].

Littlewood-Paley and Multiplier Theory

Littlewood-Paley and Multiplier Theory PDF Author: R. E. Edwards
Publisher: Springer Science & Business Media
ISBN: 3642663664
Category : Mathematics
Languages : en
Pages : 223

Book Description
This book is intended to be a detailed and carefully written account of various versions of the Littlewood-Paley theorem and of some of its applications, together with indications of its general significance in Fourier multiplier theory. We have striven to make the presentation self-contained and unified, and adapted primarily for use by graduate students and established mathematicians who wish to begin studies in these areas: it is certainly not intended for experts in the subject. It has been our experience, and the experience of many of our students and colleagues, that this is an area poorly served by existing books. Their accounts of the subject tend to be either ill-suited to the needs of a beginner, or fragmentary, or, in one or two instances, obscure. We hope that our book will go some way towards filling this gap in the literature. Our presentation of the Littlewood-Paley theorem proceeds along two main lines, the first relating to singular integrals on locally com pact groups, and the second to martingales. Both classical and modern versions of the theorem are dealt with, appropriate to the classical n groups IRn, ?L , Tn and to certain classes of disconnected groups. It is for the disconnected groups of Chapters 4 and 5 that we give two separate accounts of the Littlewood-Paley theorem: the first Fourier analytic, and the second probabilistic.

Sums of Independent Random Variables

Sums of Independent Random Variables PDF Author: V.V. Petrov
Publisher: Springer Science & Business Media
ISBN: 3642658091
Category : Mathematics
Languages : en
Pages : 360

Book Description
The classic "Limit Dislribntions fOT slt1ns of Independent Ramdorn Vari ables" by B.V. Gnedenko and A.N. Kolmogorov was published in 1949. Since then the theory of summation of independent variables has devel oped rapidly. Today a summing-up of the studies in this area, and their results, would require many volumes. The monograph by I.A. Ibragi mov and Yu. V. I~innik, "Independent and Stationarily Connected VaTiables", which appeared in 1965, contains an exposition of the contem porary state of the theory of the summation of independent identically distributed random variables. The present book borders on that of Ibragimov and Linnik, sharing only a few common areas. Its main focus is on sums of independent but not necessarily identically distri buted random variables. It nevertheless includes a number of the most recent results relating to sums of independent and identically distributed variables. Together with limit theorems, it presents many probahilistic inequalities for sums of an arbitrary number of independent variables. The last two chapters deal with the laws of large numbers and the law of the iterated logarithm. These questions were not treated in Ibragimov and Linnik; Gnedenko and KolmogoTOv deals only with theorems on the weak law of large numbers. Thus this book may be taken as complementary to the book by Ibragimov and Linnik. I do not, however, assume that the reader is familiar with the latter, nor with the monograph by Gnedenko and Kolmogorov, which has long since become a bibliographical rarity

Manifolds all of whose Geodesics are Closed

Manifolds all of whose Geodesics are Closed PDF Author: A. L. Besse
Publisher: Springer Science & Business Media
ISBN: 3642618766
Category : Mathematics
Languages : en
Pages : 271

Book Description
X 1 O S R Cher lecteur, J'entre bien tard dans la sphere etroite des ecrivains au double alphabet, moi qui, il y a plus de quarante ans deja, avais accueilli sur mes terres un general epris de mathematiques. JI m'avait parle de ses projets grandioses en promettant d'ailleurs de m'envoyer ses ouvrages de geometrie. Je suis entiche de geometrie et c'est d'elle dontje voudrais vous parler, oh! certes pas de toute la geometrie, mais de celle que fait l'artisan qui taille, burine, amene, gauchit, peaufine les formes. Mon interet pour le probleme dont je veux vous entretenir ici, je le dois a un ami ebeniste. En effet comme je rendais un jour visite il cet ami, je le trouvai dans son atelier affaire a un tour. Il se retourna bientot, puis, rayonnant, me tendit une sorte de toupie et me dit: {laquo}Monsieur Besse, vous qui calculez les formes avec vos grimoires, que pensez-vous de ceci?)) Je le regardai interloque. Il poursuivit: {laquo}Regardez! Si vous prenez ce collier de laine et si vous le maintenez fermement avec un doigt place n'importe ou sur la toupie, eh bien! la toupie passera toujours juste en son interieur, sans laisser le moindre espace.)) Je rentrai chez moi, fort etonne, car sa toupie etait loin d'etre une boule. Je me mis alors au travail ...

Cohomology Theory of Topological Transformation Groups

Cohomology Theory of Topological Transformation Groups PDF Author: W.Y. Hsiang
Publisher: Springer Science & Business Media
ISBN: 3642660525
Category : Mathematics
Languages : en
Pages : 175

Book Description
Historically, applications of algebraic topology to the study of topological transformation groups were originated in the work of L. E. 1. Brouwer on periodic transformations and, a little later, in the beautiful fixed point theorem ofP. A. Smith for prime periodic maps on homology spheres. Upon comparing the fixed point theorem of Smith with its predecessors, the fixed point theorems of Brouwer and Lefschetz, one finds that it is possible, at least for the case of homology spheres, to upgrade the conclusion of mere existence (or non-existence) to the actual determination of the homology type of the fixed point set, if the map is assumed to be prime periodic. The pioneer result of P. A. Smith clearly suggests a fruitful general direction of studying topological transformation groups in the framework of algebraic topology. Naturally, the immediate problems following the Smith fixed point theorem are to generalize it both in the direction of replacing the homology spheres by spaces of more general topological types and in the direction of replacing the group tl by more general compact groups.

Surgery on Simply-Connected Manifolds

Surgery on Simply-Connected Manifolds PDF Author: William Browder
Publisher: Springer Science & Business Media
ISBN: 364250020X
Category : Mathematics
Languages : en
Pages : 141

Book Description
This book is an exposition of the technique of surgery on simply-connected smooth manifolds. Systematic study of differentiable manifolds using these ideas was begun by Milnor [45] and Wallace [68] and developed extensively in the last ten years. It is now possible to give a reasonably complete theory of simply-connected manifolds of dimension ~ 5 using this approach and that is what I will try to begin here. The emphasis has been placed on stating and proving the general results necessary to apply this method in various contexts. In Chapter II, these results are stated, and then applications are given to characterizing the homotopy type of differentiable manifolds and classifying manifolds within a given homotopy type. This theory was first extensively developed in Kervaire and Milnor [34] in the case of homotopy spheres, globalized by S. P. Novikov [49] and the author [6] for closed 1-connected manifolds, and extended to the bounded case by Wall [65] and Golo [23]. The thesis of Sullivan [62] reformed the theory in an elegant way in terms of classifying spaces.

Potential Theory on Locally Compact Abelian Groups

Potential Theory on Locally Compact Abelian Groups PDF Author: C. van den Berg
Publisher: Springer Science & Business Media
ISBN: 3642661289
Category : Mathematics
Languages : en
Pages : 205

Book Description
Classical potential theory can be roughly characterized as the study of Newtonian potentials and the Laplace operator on the Euclidean space JR3. It was discovered around 1930 that there is a profound connection between classical potential 3 theory and the theory of Brownian motion in JR . The Brownian motion is determined by its semigroup of transition probabilities, the Brownian semigroup, and the connection between classical potential theory and the theory of Brownian motion can be described analytically in the following way: The Laplace operator is the infinitesimal generator for the Brownian semigroup and the Newtonian potential kernel is the" integral" of the Brownian semigroup with respect to time. This connection between classical potential theory and the theory of Brownian motion led Hunt (cf. Hunt [2]) to consider general "potential theories" defined in terms of certain stochastic processes or equivalently in terms of certain semi groups of operators on spaces of functions. The purpose of the present exposition is to study such general potential theories where the following aspects of classical potential theory are preserved: (i) The theory is defined on a locally compact abelian group. (ii) The theory is translation invariant in the sense that any translate of a potential or a harmonic function is again a potential, respectively a harmonic function; this property of classical potential theory can also be expressed by saying that the Laplace operator is a differential operator with constant co efficients.

Canadian Mathematical Bulletin

Canadian Mathematical Bulletin PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 128

Book Description