Author: Horst Leipholz
Publisher: Springer Science & Business Media
ISBN: 3642650732
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Until recently there was no uniform stability theory. Different approaches to stability problems had been developed in the different branches of mechanics. In the field of elasticity, it was mainly the so called static method and energy method which were used, while in the field of dynamics it was the kinetic method, which found its perfect expression in the theory of Liapunov. During the last few decades there has been a rapid development in the general theory of stability, stimulated, for example, by the investigations of H. ZIEGLER on elastic systems subject to non-conservative loads, and by the problems arising in aeroelasticity which are closely related to those introduced by ZIEGLER. The need was felt for kinetic methods which could also be used in investigating the stability of deformable systems. Efforts were made to adapt such methods, already known and developed in the stability theory of rigid systems, for application in the stability theory of continuous systems. During the last ten years interest was focused mainly on the application of a generalized Liapunov method to stability problems of continuous systems. All this was done in attempts to unify the various approaches to stability theory. It was with the idea of encouraging such a tendency, establishing to what extent a uniform physical and mathematical foundation already existed for stability theory in all branches of mechanics, and stimulating the further deve lopment of a common stability theory, that a IUTAM-Symposium was devoted to this topic.
Instability of Continuous Systems
Author: Horst Leipholz
Publisher: Springer Science & Business Media
ISBN: 3642650732
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Until recently there was no uniform stability theory. Different approaches to stability problems had been developed in the different branches of mechanics. In the field of elasticity, it was mainly the so called static method and energy method which were used, while in the field of dynamics it was the kinetic method, which found its perfect expression in the theory of Liapunov. During the last few decades there has been a rapid development in the general theory of stability, stimulated, for example, by the investigations of H. ZIEGLER on elastic systems subject to non-conservative loads, and by the problems arising in aeroelasticity which are closely related to those introduced by ZIEGLER. The need was felt for kinetic methods which could also be used in investigating the stability of deformable systems. Efforts were made to adapt such methods, already known and developed in the stability theory of rigid systems, for application in the stability theory of continuous systems. During the last ten years interest was focused mainly on the application of a generalized Liapunov method to stability problems of continuous systems. All this was done in attempts to unify the various approaches to stability theory. It was with the idea of encouraging such a tendency, establishing to what extent a uniform physical and mathematical foundation already existed for stability theory in all branches of mechanics, and stimulating the further deve lopment of a common stability theory, that a IUTAM-Symposium was devoted to this topic.
Publisher: Springer Science & Business Media
ISBN: 3642650732
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Until recently there was no uniform stability theory. Different approaches to stability problems had been developed in the different branches of mechanics. In the field of elasticity, it was mainly the so called static method and energy method which were used, while in the field of dynamics it was the kinetic method, which found its perfect expression in the theory of Liapunov. During the last few decades there has been a rapid development in the general theory of stability, stimulated, for example, by the investigations of H. ZIEGLER on elastic systems subject to non-conservative loads, and by the problems arising in aeroelasticity which are closely related to those introduced by ZIEGLER. The need was felt for kinetic methods which could also be used in investigating the stability of deformable systems. Efforts were made to adapt such methods, already known and developed in the stability theory of rigid systems, for application in the stability theory of continuous systems. During the last ten years interest was focused mainly on the application of a generalized Liapunov method to stability problems of continuous systems. All this was done in attempts to unify the various approaches to stability theory. It was with the idea of encouraging such a tendency, establishing to what extent a uniform physical and mathematical foundation already existed for stability theory in all branches of mechanics, and stimulating the further deve lopment of a common stability theory, that a IUTAM-Symposium was devoted to this topic.
Stability of Dynamical Systems
Author:
Publisher: Springer Science & Business Media
ISBN: 0817644865
Category : Differentiable dynamical systems
Languages : en
Pages : 516
Book Description
In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.
Publisher: Springer Science & Business Media
ISBN: 0817644865
Category : Differentiable dynamical systems
Languages : en
Pages : 516
Book Description
In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.
Finite-Time Stability: An Input-Output Approach
Author: Francesco Amato
Publisher: John Wiley & Sons
ISBN: 1119140528
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.
Publisher: John Wiley & Sons
ISBN: 1119140528
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.
Evolution of Spontaneous Structures in Dissipative Continuous Systems
Author: Friedrich H. Busse
Publisher: Springer Science & Business Media
ISBN: 3540495371
Category : Science
Languages : en
Pages : 592
Book Description
In the decades the of the formation of structures past subject spontaneous in far from has into a branch of - systems equilibrium major physics grown search with ties to It has become evident that strong neighboring disciplines. a diverse of can be understood within a common mat- phenomena range matical framework which has been called nonlinear of continuous dynamics This name the close to the field of nonlinear systems. emphasizes relationship of with few of freedom which has evolved into a dynamics systems degrees mature in the recent features mathematically subject past. Many dynamical of continuous be described reduction few can a to a systems actually through of freedom and of the latter of continue to degrees properties type systems of continuous the inspire study systems. The of this book is to demonstrate the numerous goal through examples that exist for the of nonlinear the opportunities study phenomena through tools of mathematical and use of common analyses dynamical interpretations. Instead of overview of the a providing comprehensive rapidly evolving field, the contributors to this book are to communicate to a wide scientific trying audience the of what have learnt about the formation of essence they spon- neous structures in continuous and about the dissipative systems competition between order and chaos that characterizes these It is that systems. hoped the book will be even to those scientists whose not helpful are disciplines the authors.
Publisher: Springer Science & Business Media
ISBN: 3540495371
Category : Science
Languages : en
Pages : 592
Book Description
In the decades the of the formation of structures past subject spontaneous in far from has into a branch of - systems equilibrium major physics grown search with ties to It has become evident that strong neighboring disciplines. a diverse of can be understood within a common mat- phenomena range matical framework which has been called nonlinear of continuous dynamics This name the close to the field of nonlinear systems. emphasizes relationship of with few of freedom which has evolved into a dynamics systems degrees mature in the recent features mathematically subject past. Many dynamical of continuous be described reduction few can a to a systems actually through of freedom and of the latter of continue to degrees properties type systems of continuous the inspire study systems. The of this book is to demonstrate the numerous goal through examples that exist for the of nonlinear the opportunities study phenomena through tools of mathematical and use of common analyses dynamical interpretations. Instead of overview of the a providing comprehensive rapidly evolving field, the contributors to this book are to communicate to a wide scientific trying audience the of what have learnt about the formation of essence they spon- neous structures in continuous and about the dissipative systems competition between order and chaos that characterizes these It is that systems. hoped the book will be even to those scientists whose not helpful are disciplines the authors.
Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems
Author: F.H. Busse
Publisher: Springer Science & Business Media
ISBN: 1468457934
Category : Science
Languages : en
Pages : 552
Book Description
This volume contains papers contributed to the NATO Advanced Research Workshop "Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems" held in Streitberg, Fed. Rep. Germany, Sept. 24 through 30, 1989. The purpose of the rather long title has been to focus attention on a particularly fruitful direction of research within the broad field covered by terms like Nonlinear Dynamics or Non-Equilibrium Systems. After physicists have been occupied for several decades mainly with the microscopic structure of matter, recent years have witnessed a resurgence of interest in macroscopic patterns and dynamics. Research on these latter phenomena has not been dormant, of course, since fluid dynamicists interested in the origin of turbulence, meteorologists studying weather patterns and numerous other scientists have continued to advance the understanding of the structures relevant to their disciplines. The recent progress in the dynamics of nonl inear systems wi th few degrees of freedom and the discovery of universal laws such as the Feigenbaum scaling of period-doubling cascades has given rise to new hopes for the understanding of common principles underlying the spontaneous formation of structures in extended continuous systems.
Publisher: Springer Science & Business Media
ISBN: 1468457934
Category : Science
Languages : en
Pages : 552
Book Description
This volume contains papers contributed to the NATO Advanced Research Workshop "Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems" held in Streitberg, Fed. Rep. Germany, Sept. 24 through 30, 1989. The purpose of the rather long title has been to focus attention on a particularly fruitful direction of research within the broad field covered by terms like Nonlinear Dynamics or Non-Equilibrium Systems. After physicists have been occupied for several decades mainly with the microscopic structure of matter, recent years have witnessed a resurgence of interest in macroscopic patterns and dynamics. Research on these latter phenomena has not been dormant, of course, since fluid dynamicists interested in the origin of turbulence, meteorologists studying weather patterns and numerous other scientists have continued to advance the understanding of the structures relevant to their disciplines. The recent progress in the dynamics of nonl inear systems wi th few degrees of freedom and the discovery of universal laws such as the Feigenbaum scaling of period-doubling cascades has given rise to new hopes for the understanding of common principles underlying the spontaneous formation of structures in extended continuous systems.
Theory of Stability of Continuous Elastic Structures
Author: Mario Como
Publisher: Routledge
ISBN: 1351408534
Category : Mathematics
Languages : en
Pages : 272
Book Description
Theory of Stability of Continuous Elastic Structures presents an applied mathematical treatment of the stability of civil engineering structures. The book's modern and rigorous approach makes it especially useful as a text in advanced engineering courses and an invaluable reference for engineers.
Publisher: Routledge
ISBN: 1351408534
Category : Mathematics
Languages : en
Pages : 272
Book Description
Theory of Stability of Continuous Elastic Structures presents an applied mathematical treatment of the stability of civil engineering structures. The book's modern and rigorous approach makes it especially useful as a text in advanced engineering courses and an invaluable reference for engineers.
Lyapunov Functionals and Stability of Stochastic Difference Equations
Author: Leonid Shaikhet
Publisher: Springer Science & Business Media
ISBN: 085729685X
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference equations with delay can be obtained using a Lyapunov functional. Lyapunov Functionals and Stability of Stochastic Difference Equations describes a general method of Lyapunov functional construction to investigate the stability of discrete- and continuous-time stochastic Volterra difference equations. The method allows the investigation of the degree to which the stability properties of differential equations are preserved in their difference analogues. The text is self-contained, beginning with basic definitions and the mathematical fundamentals of Lyapunov functional construction and moving on from particular to general stability results for stochastic difference equations with constant coefficients. Results are then discussed for stochastic difference equations of linear, nonlinear, delayed, discrete and continuous types. Examples are drawn from a variety of physical systems including inverted pendulum control, study of epidemic development, Nicholson’s blowflies equation and predator–prey relationships. Lyapunov Functionals and Stability of Stochastic Difference Equations is primarily addressed to experts in stability theory but will also be of use in the work of pure and computational mathematicians and researchers using the ideas of optimal control to study economic, mechanical and biological systems.
Publisher: Springer Science & Business Media
ISBN: 085729685X
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference equations with delay can be obtained using a Lyapunov functional. Lyapunov Functionals and Stability of Stochastic Difference Equations describes a general method of Lyapunov functional construction to investigate the stability of discrete- and continuous-time stochastic Volterra difference equations. The method allows the investigation of the degree to which the stability properties of differential equations are preserved in their difference analogues. The text is self-contained, beginning with basic definitions and the mathematical fundamentals of Lyapunov functional construction and moving on from particular to general stability results for stochastic difference equations with constant coefficients. Results are then discussed for stochastic difference equations of linear, nonlinear, delayed, discrete and continuous types. Examples are drawn from a variety of physical systems including inverted pendulum control, study of epidemic development, Nicholson’s blowflies equation and predator–prey relationships. Lyapunov Functionals and Stability of Stochastic Difference Equations is primarily addressed to experts in stability theory but will also be of use in the work of pure and computational mathematicians and researchers using the ideas of optimal control to study economic, mechanical and biological systems.
Signals and Systems
Author: Richard Baraniuk
Publisher: Orange Grove Texts Plus
ISBN: 9781616100681
Category :
Languages : en
Pages : 0
Book Description
This text deals with signals, systems, and transforms, from their theoretical mathematical foundations to practical implementation in circuits and computer algorithms. At its conclusion, learners will have a deep understanding of the mathematics and practical issues of signals in continuous and discrete time, linear time invariant systems, convolution, and Fourier transforms.
Publisher: Orange Grove Texts Plus
ISBN: 9781616100681
Category :
Languages : en
Pages : 0
Book Description
This text deals with signals, systems, and transforms, from their theoretical mathematical foundations to practical implementation in circuits and computer algorithms. At its conclusion, learners will have a deep understanding of the mathematics and practical issues of signals in continuous and discrete time, linear time invariant systems, convolution, and Fourier transforms.
Continuous System Simulation
Author: François E. Cellier
Publisher: Springer Science & Business Media
ISBN: 0387302603
Category : Computers
Languages : en
Pages : 659
Book Description
Highly computer-oriented text, introducing numerical methods and algorithms along with the applications and conceptual tools. Includes homework problems, suggestions for research projects, and open-ended questions at the end of each chapter. Written by our successful author who also wrote Continuous System Modeling, a best-selling Springer book first published in the 1991 (sold about 1500 copies).
Publisher: Springer Science & Business Media
ISBN: 0387302603
Category : Computers
Languages : en
Pages : 659
Book Description
Highly computer-oriented text, introducing numerical methods and algorithms along with the applications and conceptual tools. Includes homework problems, suggestions for research projects, and open-ended questions at the end of each chapter. Written by our successful author who also wrote Continuous System Modeling, a best-selling Springer book first published in the 1991 (sold about 1500 copies).
Vibrations of Continuous Systems
Author: Eberhard Brommundt
Publisher: Springer
ISBN: 3709129184
Category : Science
Languages : en
Pages : 219
Book Description
Publisher: Springer
ISBN: 3709129184
Category : Science
Languages : en
Pages : 219
Book Description