Author: Asao Arai
Publisher: Springer Nature
ISBN: 9811956782
Category : Science
Languages : en
Pages : 123
Book Description
This book explains the mathematical structures of supersymmetric quantum field theory (SQFT) from the viewpoints of functional and infinite-dimensional analysis. The main mathematical objects are infinite-dimensional Dirac operators on the abstract Boson–Fermion Fock space. The target audience consists of graduate students and researchers who are interested in mathematical analysis of quantum fields, including supersymmetric ones, and infinite-dimensional analysis. The major topics are the clarification of general mathematical structures that some models in the SQFT have in common, and the mathematically rigorous analysis of them. The importance and the relevance of the subject are that in physics literature, supersymmetric quantum field models are only formally (heuristically) considered and hence may be ill-defined mathematically. From a mathematical point of view, however, they suggest new aspects related to infinite-dimensional geometry and analysis. Therefore, it is important to show the mathematical existence of such models first and then study them in detail. The book shows that the theory of the abstract Boson–Fermion Fock space serves this purpose. The analysis developed in the book also provides a good example of infinite-dimensional analysis from the functional analysis point of view, including a theory of infinite-dimensional Dirac operators and Laplacians.
Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields
Author: Asao Arai
Publisher: Springer Nature
ISBN: 9811956782
Category : Science
Languages : en
Pages : 123
Book Description
This book explains the mathematical structures of supersymmetric quantum field theory (SQFT) from the viewpoints of functional and infinite-dimensional analysis. The main mathematical objects are infinite-dimensional Dirac operators on the abstract Boson–Fermion Fock space. The target audience consists of graduate students and researchers who are interested in mathematical analysis of quantum fields, including supersymmetric ones, and infinite-dimensional analysis. The major topics are the clarification of general mathematical structures that some models in the SQFT have in common, and the mathematically rigorous analysis of them. The importance and the relevance of the subject are that in physics literature, supersymmetric quantum field models are only formally (heuristically) considered and hence may be ill-defined mathematically. From a mathematical point of view, however, they suggest new aspects related to infinite-dimensional geometry and analysis. Therefore, it is important to show the mathematical existence of such models first and then study them in detail. The book shows that the theory of the abstract Boson–Fermion Fock space serves this purpose. The analysis developed in the book also provides a good example of infinite-dimensional analysis from the functional analysis point of view, including a theory of infinite-dimensional Dirac operators and Laplacians.
Publisher: Springer Nature
ISBN: 9811956782
Category : Science
Languages : en
Pages : 123
Book Description
This book explains the mathematical structures of supersymmetric quantum field theory (SQFT) from the viewpoints of functional and infinite-dimensional analysis. The main mathematical objects are infinite-dimensional Dirac operators on the abstract Boson–Fermion Fock space. The target audience consists of graduate students and researchers who are interested in mathematical analysis of quantum fields, including supersymmetric ones, and infinite-dimensional analysis. The major topics are the clarification of general mathematical structures that some models in the SQFT have in common, and the mathematically rigorous analysis of them. The importance and the relevance of the subject are that in physics literature, supersymmetric quantum field models are only formally (heuristically) considered and hence may be ill-defined mathematically. From a mathematical point of view, however, they suggest new aspects related to infinite-dimensional geometry and analysis. Therefore, it is important to show the mathematical existence of such models first and then study them in detail. The book shows that the theory of the abstract Boson–Fermion Fock space serves this purpose. The analysis developed in the book also provides a good example of infinite-dimensional analysis from the functional analysis point of view, including a theory of infinite-dimensional Dirac operators and Laplacians.
Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields
Author: Asao Arai
Publisher:
ISBN: 9789811956799
Category :
Languages : en
Pages : 0
Book Description
This book explains the mathematical structures of supersymmetric quantum field theory (SQFT) from the viewpoints of functional and infinite-dimensional analysis. The main mathematical objects are infinite-dimensional Dirac operators on the abstract Boson-Fermion Fock space. The target audience consists of graduate students and researchers who are interested in mathematical analysis of quantum fields, including supersymmetric ones, and infinite-dimensional analysis. The major topics are the clarification of general mathematical structures that some models in the SQFT have in common, and the mathematically rigorous analysis of them. The importance and the relevance of the subject are that in physics literature, supersymmetric quantum field models are only formally (heuristically) considered and hence may be ill-defined mathematically. From a mathematical point of view, however, they suggest new aspects related to infinite-dimensional geometry and analysis. Therefore, it is important to show the mathematical existence of such models first and then study them in detail. The book shows that the theory of the abstract Boson-Fermion Fock space serves this purpose. The analysis developed in the book also provides a good example of infinite-dimensional analysis from the functional analysis point of view, including a theory of infinite-dimensional Dirac operators and Laplacians.
Publisher:
ISBN: 9789811956799
Category :
Languages : en
Pages : 0
Book Description
This book explains the mathematical structures of supersymmetric quantum field theory (SQFT) from the viewpoints of functional and infinite-dimensional analysis. The main mathematical objects are infinite-dimensional Dirac operators on the abstract Boson-Fermion Fock space. The target audience consists of graduate students and researchers who are interested in mathematical analysis of quantum fields, including supersymmetric ones, and infinite-dimensional analysis. The major topics are the clarification of general mathematical structures that some models in the SQFT have in common, and the mathematically rigorous analysis of them. The importance and the relevance of the subject are that in physics literature, supersymmetric quantum field models are only formally (heuristically) considered and hence may be ill-defined mathematically. From a mathematical point of view, however, they suggest new aspects related to infinite-dimensional geometry and analysis. Therefore, it is important to show the mathematical existence of such models first and then study them in detail. The book shows that the theory of the abstract Boson-Fermion Fock space serves this purpose. The analysis developed in the book also provides a good example of infinite-dimensional analysis from the functional analysis point of view, including a theory of infinite-dimensional Dirac operators and Laplacians.
Analysis On Fock Spaces And Mathematical Theory Of Quantum Fields: An Introduction To Mathematical Analysis Of Quantum Fields (Second Edition)
Author: Asao Arai
Publisher: World Scientific
ISBN: 9811288453
Category : Mathematics
Languages : en
Pages : 1115
Book Description
This book provides a comprehensive introduction to Fock space theory and its applications to mathematical quantum field theory. The first half of the book, Part I, is devoted to detailed descriptions of analysis on abstract Fock spaces (full Fock space, boson Fock space, fermion Fock space and boson-fermion Fock space). It includes the mathematics of second quantization, representation theory of canonical commutation and anti-commutation relations, Bogoliubov transformations, infinite-dimensional Dirac operators and supersymmetric quantum field in an abstract form. The second half of the book, Part II, covers applications of the mathematical theories in Part I to quantum field theory. Four kinds of free quantum fields are constructed and detailed analyses are made. A simple interacting quantum field model, called the van Hove-Miyatake model, is fully analyzed in an abstract form. Moreover, a list of interacting quantum field models is presented and an introductory description to each model is given. In this second edition, a new chapter (Chapter 15) is added to describe a mathematical theory of spontaneous symmetry breaking which is an important subject in modern quantum physics.This book is a good introductory text for graduate students in mathematics or physics who are interested in the mathematical aspects of quantum field theory. It is also well-suited for self-study, providing readers a firm foundation of knowledge and mathematical techniques for more advanced books and current research articles in the field of mathematical analysis on quantum fields. Numerous problems are added to aid readers in developing a deeper understanding of the field.
Publisher: World Scientific
ISBN: 9811288453
Category : Mathematics
Languages : en
Pages : 1115
Book Description
This book provides a comprehensive introduction to Fock space theory and its applications to mathematical quantum field theory. The first half of the book, Part I, is devoted to detailed descriptions of analysis on abstract Fock spaces (full Fock space, boson Fock space, fermion Fock space and boson-fermion Fock space). It includes the mathematics of second quantization, representation theory of canonical commutation and anti-commutation relations, Bogoliubov transformations, infinite-dimensional Dirac operators and supersymmetric quantum field in an abstract form. The second half of the book, Part II, covers applications of the mathematical theories in Part I to quantum field theory. Four kinds of free quantum fields are constructed and detailed analyses are made. A simple interacting quantum field model, called the van Hove-Miyatake model, is fully analyzed in an abstract form. Moreover, a list of interacting quantum field models is presented and an introductory description to each model is given. In this second edition, a new chapter (Chapter 15) is added to describe a mathematical theory of spontaneous symmetry breaking which is an important subject in modern quantum physics.This book is a good introductory text for graduate students in mathematics or physics who are interested in the mathematical aspects of quantum field theory. It is also well-suited for self-study, providing readers a firm foundation of knowledge and mathematical techniques for more advanced books and current research articles in the field of mathematical analysis on quantum fields. Numerous problems are added to aid readers in developing a deeper understanding of the field.
Recent Developments in Infinite-Dimensional Analysis and Quantum Probability
Author: Luigi Accardi
Publisher: Springer Science & Business Media
ISBN: 9401008426
Category : Mathematics
Languages : en
Pages : 455
Book Description
Recent Developments in Infinite-Dimensional Analysis and Quantum Probability is dedicated to Professor Takeyuki Hida on the occasion of his 70th birthday. The book is more than a collection of articles. In fact, in it the reader will find a consistent editorial work, devoted to attempting to obtain a unitary picture from the different contributions and to give a comprehensive account of important recent developments in contemporary white noise analysis and some of its applications. For this reason, not only the latest results, but also motivations, explanations and connections with previous work have been included. The wealth of applications, from number theory to signal processing, from optimal filtering to information theory, from the statistics of stationary flows to quantum cable equations, show the power of white noise analysis as a tool. Beyond these, the authors emphasize its connections with practically all branches of contemporary probability, including stochastic geometry, the structure theory of stationary Gaussian processes, Neumann boundary value problems, and large deviations.
Publisher: Springer Science & Business Media
ISBN: 9401008426
Category : Mathematics
Languages : en
Pages : 455
Book Description
Recent Developments in Infinite-Dimensional Analysis and Quantum Probability is dedicated to Professor Takeyuki Hida on the occasion of his 70th birthday. The book is more than a collection of articles. In fact, in it the reader will find a consistent editorial work, devoted to attempting to obtain a unitary picture from the different contributions and to give a comprehensive account of important recent developments in contemporary white noise analysis and some of its applications. For this reason, not only the latest results, but also motivations, explanations and connections with previous work have been included. The wealth of applications, from number theory to signal processing, from optimal filtering to information theory, from the statistics of stationary flows to quantum cable equations, show the power of white noise analysis as a tool. Beyond these, the authors emphasize its connections with practically all branches of contemporary probability, including stochastic geometry, the structure theory of stationary Gaussian processes, Neumann boundary value problems, and large deviations.
Sūgaku Expositions
Nonperturbative Quantum Field Theory
Author: G. Hooft
Publisher: Springer Science & Business Media
ISBN: 1461307295
Category : Science
Languages : en
Pages : 603
Book Description
During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.
Publisher: Springer Science & Business Media
ISBN: 1461307295
Category : Science
Languages : en
Pages : 603
Book Description
During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.
Geometrical Aspects of Quantum Fields
Author: Andrei A. Bytsenko
Publisher: World Scientific
ISBN: 9810245025
Category : Science
Languages : en
Pages : 213
Book Description
This volume presents the following topics: non-Abelian Toda models, brief remarks for physicists on equivariant cohomology and the Duistermaat-Heckman formula, Casimir effect, quantum groups and their application to nuclear physics, quantum field theory, quantum gravity and the theory of extended objects, and black hole physics and cosmology.
Publisher: World Scientific
ISBN: 9810245025
Category : Science
Languages : en
Pages : 213
Book Description
This volume presents the following topics: non-Abelian Toda models, brief remarks for physicists on equivariant cohomology and the Duistermaat-Heckman formula, Casimir effect, quantum groups and their application to nuclear physics, quantum field theory, quantum gravity and the theory of extended objects, and black hole physics and cosmology.
The Legacy of John von Neumann
Author: American Mathematical Society
Publisher: American Mathematical Soc.
ISBN: 9780821842195
Category : Mathematics
Languages : en
Pages : 346
Book Description
The ideas of John von Neumann have had a profound influence on modern mathematics and science. One of the great thinkers of our century, von Neumann initiated major branches of mathematics--from operator algebras to game theory to scientific computing--and had a fundamental impact on such areas as self-adjoint operators, ergodic theory and the foundations of quantum mechanics, and numerical analysis and the design of the modern computer. This volume contains the proceedings of an AMS Symposium in Pure Mathematics, held at Hofstra University, in May 1988. The symposium brought together some of the foremost researchers in the wide range of areas in which von Neumann worked. These articles illustrate the sweep of von Neumann's ideas and thinking and document their influence on contemporary mathematics. In addition, some of those who knew von Neumann when he was alive have presented here personal reminiscences about him. This book is directed to those interested in operator theory, game theory, ergodic theory, and scientific computing, as well as to historians of mathematics and others having an interest in the contemporary history of the mathematical sciences. This book will give readers an appreciation for the workings of the mind of one of the mathematical giants of our time.
Publisher: American Mathematical Soc.
ISBN: 9780821842195
Category : Mathematics
Languages : en
Pages : 346
Book Description
The ideas of John von Neumann have had a profound influence on modern mathematics and science. One of the great thinkers of our century, von Neumann initiated major branches of mathematics--from operator algebras to game theory to scientific computing--and had a fundamental impact on such areas as self-adjoint operators, ergodic theory and the foundations of quantum mechanics, and numerical analysis and the design of the modern computer. This volume contains the proceedings of an AMS Symposium in Pure Mathematics, held at Hofstra University, in May 1988. The symposium brought together some of the foremost researchers in the wide range of areas in which von Neumann worked. These articles illustrate the sweep of von Neumann's ideas and thinking and document their influence on contemporary mathematics. In addition, some of those who knew von Neumann when he was alive have presented here personal reminiscences about him. This book is directed to those interested in operator theory, game theory, ergodic theory, and scientific computing, as well as to historians of mathematics and others having an interest in the contemporary history of the mathematical sciences. This book will give readers an appreciation for the workings of the mind of one of the mathematical giants of our time.
The Legacy of John Von Neumann
Author: James G. Glimm
Publisher: American Mathematical Soc.
ISBN: 9780821868164
Category : Mathematics
Languages : en
Pages : 346
Book Description
The ideas of John von Neumann have had a profound influence on modern mathematics and science. One of the great thinkers of our century, von Neumann initiated major branches of mathematics--from operator algebras to game theory to scientific computing--and had a fundamental impact on such areas as self-adjoint operators, ergodic theory and the foundations of quantum mechanics, and numerical analysis and the design of the modern computer. This volume contains the proceedings of an AMS Symposium in Pure Mathematics, held at Hofstra University, in May 1988. The symposium brought together some of the foremost researchers in the wide range of areas in which von Neumann worked. These articles illustrate the sweep of von Neumann's ideas and thinking and document their influence on contemporary mathematics. In addition, some of those who knew von Neumann when he was alive have presented here personal reminiscences about him. This book is directed to those interested in operator theory, game theory, ergodic theory, and scientific computing, as well as to historians of mathematics and others having an interest in the contemporary history of the mathematical sciences. This book will give readers an appreciation for the workings of the mind of one of the mathematical giants of our time.
Publisher: American Mathematical Soc.
ISBN: 9780821868164
Category : Mathematics
Languages : en
Pages : 346
Book Description
The ideas of John von Neumann have had a profound influence on modern mathematics and science. One of the great thinkers of our century, von Neumann initiated major branches of mathematics--from operator algebras to game theory to scientific computing--and had a fundamental impact on such areas as self-adjoint operators, ergodic theory and the foundations of quantum mechanics, and numerical analysis and the design of the modern computer. This volume contains the proceedings of an AMS Symposium in Pure Mathematics, held at Hofstra University, in May 1988. The symposium brought together some of the foremost researchers in the wide range of areas in which von Neumann worked. These articles illustrate the sweep of von Neumann's ideas and thinking and document their influence on contemporary mathematics. In addition, some of those who knew von Neumann when he was alive have presented here personal reminiscences about him. This book is directed to those interested in operator theory, game theory, ergodic theory, and scientific computing, as well as to historians of mathematics and others having an interest in the contemporary history of the mathematical sciences. This book will give readers an appreciation for the workings of the mind of one of the mathematical giants of our time.
Geometric Analysis and Applications to Quantum Field Theory
Author: Peter Bouwknegt
Publisher: Springer Science & Business Media
ISBN: 9780817642877
Category : Mathematics
Languages : en
Pages : 222
Book Description
In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.
Publisher: Springer Science & Business Media
ISBN: 9780817642877
Category : Mathematics
Languages : en
Pages : 222
Book Description
In the last decade there has been an extraordinary confluence of ideas in mathematics and theoretical physics brought about by pioneering discoveries in geometry and analysis. The various chapters in this volume, treating the interface of geometric analysis and mathematical physics, represent current research interests. No suitable succinct account of the material is available elsewhere. Key topics include: * A self-contained derivation of the partition function of Chern- Simons gauge theory in the semiclassical approximation (D.H. Adams) * Algebraic and geometric aspects of the Knizhnik-Zamolodchikov equations in conformal field theory (P. Bouwknegt) * Application of the representation theory of loop groups to simple models in quantum field theory and to certain integrable systems (A.L. Carey and E. Langmann) * A study of variational methods in Hermitian geometry from the viewpoint of the critical points of action functionals together with physical backgrounds (A. Harris) * A review of monopoles in nonabelian gauge theories (M.K. Murray) * Exciting developments in quantum cohomology (Y. Ruan) * The physics origin of Seiberg-Witten equations in 4-manifold theory (S. Wu) Graduate students, mathematicians and mathematical physicists in the above-mentioned areas will benefit from the user-friendly introductory style of each chapter as well as the comprehensive bibliographies provided for each topic. Prerequisite knowledge is minimal since sufficient background material motivates each chapter.