Fundamentals of Inelastic Electron Scattering PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fundamentals of Inelastic Electron Scattering PDF full book. Access full book title Fundamentals of Inelastic Electron Scattering by P. Schattschneider. Download full books in PDF and EPUB format.

Fundamentals of Inelastic Electron Scattering

Fundamentals of Inelastic Electron Scattering PDF Author: P. Schattschneider
Publisher: Springer Science & Business Media
ISBN: 3709188660
Category : Technology & Engineering
Languages : en
Pages : 205

Book Description
Electron energy loss spectroscopy (ELS) is a vast subject with a long and honorable history. The problem of stopping power for high energy particles interested the earliest pioneers of quantum mechanics such as Bohr and Bethe, who laid the theoretical foun dations of the subject. The experimental origins might perhaps be traced to the original Franck-Hertz experiment. The modern field includes topics as diverse as low energy reflection electron energy loss studies of surface vibrational modes, the spectroscopy of gases and the modern theory of plasmon excitation in crystals. For the study of ELS in electron microscopy, several historically distinct areas of physics are relevant, including the theory of the Debye Waller factor for virtual inelastic scattering, the use of complex optical potentials, lattice dynamics for crystalline specimens and the theory of atomic ionisation for isolated atoms. However the field of electron energy loss spectroscopy contains few useful texts which can be recommended for students. With the recent appearance of Raether's and Egerton's hooks (see text for references), we have for the first time both a comprehensive review text-due to Raether-and a lucid introductory text which emphasizes experimental aspects-due to Egerton. Raether's text tends to emphasize the recent work on surface plasmons, while the strength of Egerton's book is its treatment of inner shell excitations for microanalysis, based on the use of atomic wavefunctions for crystal electrons.

Fundamentals of Inelastic Electron Scattering

Fundamentals of Inelastic Electron Scattering PDF Author: P. Schattschneider
Publisher: Springer Science & Business Media
ISBN: 3709188660
Category : Technology & Engineering
Languages : en
Pages : 205

Book Description
Electron energy loss spectroscopy (ELS) is a vast subject with a long and honorable history. The problem of stopping power for high energy particles interested the earliest pioneers of quantum mechanics such as Bohr and Bethe, who laid the theoretical foun dations of the subject. The experimental origins might perhaps be traced to the original Franck-Hertz experiment. The modern field includes topics as diverse as low energy reflection electron energy loss studies of surface vibrational modes, the spectroscopy of gases and the modern theory of plasmon excitation in crystals. For the study of ELS in electron microscopy, several historically distinct areas of physics are relevant, including the theory of the Debye Waller factor for virtual inelastic scattering, the use of complex optical potentials, lattice dynamics for crystalline specimens and the theory of atomic ionisation for isolated atoms. However the field of electron energy loss spectroscopy contains few useful texts which can be recommended for students. With the recent appearance of Raether's and Egerton's hooks (see text for references), we have for the first time both a comprehensive review text-due to Raether-and a lucid introductory text which emphasizes experimental aspects-due to Egerton. Raether's text tends to emphasize the recent work on surface plasmons, while the strength of Egerton's book is its treatment of inner shell excitations for microanalysis, based on the use of atomic wavefunctions for crystal electrons.

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging PDF Author: Zhong-lin Wang
Publisher: Springer Science & Business Media
ISBN: 1489915796
Category : Science
Languages : en
Pages : 461

Book Description
Elastic and inelastic scattering in transmission electron microscopy (TEM) are important research subjects. For a long time, I have wished to systematically summarize various dynamic theories associated with quantitative electron micros copy and their applications in simulations of electron diffraction patterns and images. This wish now becomes reality. The aim of this book is to explore the physics in electron diffraction and imaging and related applications for materials characterizations. Particular emphasis is placed on diffraction and imaging of inelastically scattered electrons, which, I believe, have not been discussed exten sively in existing books. This book assumes that readers have some preknowledge of electron microscopy, electron diffraction, and quantum mechanics. I anticipate that this book will be a guide to approaching phenomena observed in electron microscopy from the prospects of diffraction physics. The SI units are employed throughout the book except for angstrom (A), which is used occasionally for convenience. To reduce the number of symbols used, the Fourier transform of a real-space function P'(r), for example, is denoted by the same symbol P'(u) in reciprocal space except that r is replaced by u. Upper and lower limits of an integral in the book are (-co, co) unless otherwise specified. The (-co, co) integral limits are usually omitted in a mathematical expression for simplification. I very much appreciate opportunity of working with Drs. J. M. Cowley and J. C. H. Spence (Arizona State University), J.

Electron Dynamics by Inelastic X-Ray Scattering

Electron Dynamics by Inelastic X-Ray Scattering PDF Author: Winfried Schülke
Publisher: Oxford University Press, USA
ISBN: 0198510179
Category : Science
Languages : en
Pages : 606

Book Description
This work offers the first comprehensive review of experimental methods, theory, and successful applications of synchrotron radiation based on inelastic X-ray scattering spectroscopy, which enables the investigation of electron dynamics in condensed matter (correlated motion and excitation).

Electron Scattering in Solid Matter

Electron Scattering in Solid Matter PDF Author: Jan Zabloudil
Publisher: Springer Science & Business Media
ISBN: 3540270019
Category : Science
Languages : en
Pages : 386

Book Description
Addressing graduate students and researchers, this book gives a very detailed theoretical and computational description of multiple scattering in solid matter. Particular emphasis is placed on solids with reduced dimensions, on full potential approaches and on relativistic treatments. For the first time approaches such as the screened Korringa-Kohn-Rostoker method are reviewed, considering all formal steps such as single-site scattering, structure constants and screening transformations, and also the numerical point of view. Furthermore, a very general approach is presented for solving the Poisson equation, needed within density functional theory in order to achieve self-consistency. Special chapters are devoted to the Coherent Potential Approximation and to the Embedded Cluster Method, used, for example, for describing nanostructured matter in real space. In a final chapter, physical properties related to the (single-particle) Green's function, such as magnetic anisotropies, interlayer exchange coupling, electric and magneto-optical transport and spin-waves, serve to illustrate the usefulness of the methods described.

Electron Scattering

Electron Scattering PDF Author: Colm T. Whelan
Publisher: Springer Science & Business Media
ISBN: 0387275673
Category : Science
Languages : en
Pages : 342

Book Description
There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.

Electron Scattering for Nuclear and Nucleon Structure

Electron Scattering for Nuclear and Nucleon Structure PDF Author: John Dirk Walecka
Publisher: Cambridge University Press
ISBN: 1139429973
Category : Science
Languages : en
Pages : 381

Book Description
Scattering of high-energy electrons from nuclear and nucleon targets essentially provides a microscope for examining the structure of these tiny objects. This 2001 book examines the motivation for electron scattering, develops the theoretical analysis of the process and summarises present experimental capabilities. Suitable for advanced undergraduates, graduates and researchers.

Deep Inelastic Scattering

Deep Inelastic Scattering PDF Author: Robin Devenish
Publisher: OUP Oxford
ISBN: 0191621951
Category : Science
Languages : en
Pages : 418

Book Description
This book provides an up-to-date, self-contained account of deep inelastic scattering in high-energy physics, intended for graduate students and physicists new to the subject. It covers the classic results which led to the quark-parton model of hadrons and the establishment of quantum chromodynamics as the theory of the strong nuclear force, in addition to new vistas in the subject opened up by the electron-proton collider HERA. The extraction of parton momentum distribution functions, a key input for physics at hadron colliders such as the Tevatron at Fermi Lab and the Large Hadron Collider at CERN, is described in detail. The challenges of the HERA data at 'low x' are described and possible explanations in terms of gluon dynamics and other models outlined. Other chapters cover: jet production at large momentum transfer and the determination of the strong coupling constant, electroweak interactions at very high momentum transfers, the extension of deep inelastic techniques to include hadronic probes, a summary of fully polarised inelastic scattering and the spin structure of the nucleon, and finally a brief account of methods in searching for signals 'beyond the standard model'.

Transmission Electron Microscopy

Transmission Electron Microscopy PDF Author: David B. Williams
Publisher: Springer Science & Business Media
ISBN: 1475725191
Category : Science
Languages : en
Pages : 708

Book Description
Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi of materials by completing the processing-structure-prop croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them to achieve specific sets of properties; the extraordinary abili selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM of all of these areas before one can hope to tackle signifi instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate be used with care and attention, in many cases involving rials education must include suitable courses in electron mi teams of experts from different venues. The fundamentals croscopy. It is also essential that suitable texts be available are, of course, based in physics, so aspiring materials sci for the preparation of the students and researchers who must entists would be well advised to have prior exposure to, for carry out electron microscopy properly and quantitatively.

Theory of Inelastic Scattering and Absorption of X-rays

Theory of Inelastic Scattering and Absorption of X-rays PDF Author: Michel van Veenendaal
Publisher: Cambridge University Press
ISBN: 1107033551
Category : Science
Languages : en
Pages : 247

Book Description
Self-contained and comprehensive, this is the definitive guide to the theory behind X-ray spectroscopy.

Transmission Electron Microscopy and Diffractometry of Materials

Transmission Electron Microscopy and Diffractometry of Materials PDF Author: Brent Fultz
Publisher: Springer Science & Business Media
ISBN: 3642297609
Category : Science
Languages : en
Pages : 775

Book Description
This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes laboratory exercises.