Imprimitive Irreducible Modules for Finite Quasisimple Groups PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Imprimitive Irreducible Modules for Finite Quasisimple Groups PDF full book. Access full book title Imprimitive Irreducible Modules for Finite Quasisimple Groups by Gerhard Hiss. Download full books in PDF and EPUB format.

Imprimitive Irreducible Modules for Finite Quasisimple Groups

Imprimitive Irreducible Modules for Finite Quasisimple Groups PDF Author: Gerhard Hiss
Publisher: American Mathematical Soc.
ISBN: 1470409607
Category : Mathematics
Languages : en
Pages : 126

Book Description
Motivated by the maximal subgroup problem of the finite classical groups the authors begin the classification of imprimitive irreducible modules of finite quasisimple groups over algebraically closed fields K. A module of a group G over K is imprimitive, if it is induced from a module of a proper subgroup of G. The authors obtain their strongest results when char(K)=0, although much of their analysis carries over into positive characteristic. If G is a finite quasisimple group of Lie type, they prove that an imprimitive irreducible KG-module is Harish-Chandra induced. This being true for \rm char(K) different from the defining characteristic of G, the authors specialize to the case char(K)=0 and apply Harish-Chandra philosophy to classify irreducible Harish-Chandra induced modules in terms of Harish-Chandra series, as well as in terms of Lusztig series. The authors determine the asymptotic proportion of the irreducible imprimitive KG-modules, when G runs through a series groups of fixed (twisted) Lie type. One of the surprising outcomes of their investigations is the fact that these proportions tend to 1, if the Lie rank of the groups tends to infinity. For exceptional groups G of Lie type of small rank, and for sporadic groups G, the authors determine all irreducible imprimitive KG-modules for arbitrary characteristic of K.