Author: J. W. McPherson
Publisher: Springer
ISBN: 3319936832
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
This third edition textbook provides the basics of reliability physics and engineering that are needed by electrical engineers, mechanical engineers, civil engineers, biomedical engineers, materials scientists, and applied physicists to help them to build better devices/products. The information contained within should help all fields of engineering to develop better methodologies for: more reliable product designs, more reliable materials selections, and more reliable manufacturing processes— all of which should help to improve product reliability. A mathematics level through differential equations is needed. Also, a familiarity with the use of excel spreadsheets is assumed. Any needed statistical training and tools are contained within the text. While device failure is a statistical process (thus making statistics important), the emphasis of this book is clearly on the physics of failure and developing the reliability engineering tools required for product improvements during device-design and device-fabrication phases.
Reliability Physics and Engineering
Author: J. W. McPherson
Publisher: Springer
ISBN: 3319936832
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
This third edition textbook provides the basics of reliability physics and engineering that are needed by electrical engineers, mechanical engineers, civil engineers, biomedical engineers, materials scientists, and applied physicists to help them to build better devices/products. The information contained within should help all fields of engineering to develop better methodologies for: more reliable product designs, more reliable materials selections, and more reliable manufacturing processes— all of which should help to improve product reliability. A mathematics level through differential equations is needed. Also, a familiarity with the use of excel spreadsheets is assumed. Any needed statistical training and tools are contained within the text. While device failure is a statistical process (thus making statistics important), the emphasis of this book is clearly on the physics of failure and developing the reliability engineering tools required for product improvements during device-design and device-fabrication phases.
Publisher: Springer
ISBN: 3319936832
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
This third edition textbook provides the basics of reliability physics and engineering that are needed by electrical engineers, mechanical engineers, civil engineers, biomedical engineers, materials scientists, and applied physicists to help them to build better devices/products. The information contained within should help all fields of engineering to develop better methodologies for: more reliable product designs, more reliable materials selections, and more reliable manufacturing processes— all of which should help to improve product reliability. A mathematics level through differential equations is needed. Also, a familiarity with the use of excel spreadsheets is assumed. Any needed statistical training and tools are contained within the text. While device failure is a statistical process (thus making statistics important), the emphasis of this book is clearly on the physics of failure and developing the reliability engineering tools required for product improvements during device-design and device-fabrication phases.
Advanced Interconnects for ULSI Technology
Author: Mikhail Baklanov
Publisher: John Wiley & Sons
ISBN: 1119966868
Category : Technology & Engineering
Languages : en
Pages : 616
Book Description
Finding new materials for copper/low-k interconnects is critical to the continuing development of computer chips. While copper/low-k interconnects have served well, allowing for the creation of Ultra Large Scale Integration (ULSI) devices which combine over a billion transistors onto a single chip, the increased resistance and RC-delay at the smaller scale has become a significant factor affecting chip performance. Advanced Interconnects for ULSI Technology is dedicated to the materials and methods which might be suitable replacements. It covers a broad range of topics, from physical principles to design, fabrication, characterization, and application of new materials for nano-interconnects, and discusses: Interconnect functions, characterisations, electrical properties and wiring requirements Low-k materials: fundamentals, advances and mechanical properties Conductive layers and barriers Integration and reliability including mechanical reliability, electromigration and electrical breakdown New approaches including 3D, optical, wireless interchip, and carbon-based interconnects Intended for postgraduate students and researchers, in academia and industry, this book provides a critical overview of the enabling technology at the heart of the future development of computer chips.
Publisher: John Wiley & Sons
ISBN: 1119966868
Category : Technology & Engineering
Languages : en
Pages : 616
Book Description
Finding new materials for copper/low-k interconnects is critical to the continuing development of computer chips. While copper/low-k interconnects have served well, allowing for the creation of Ultra Large Scale Integration (ULSI) devices which combine over a billion transistors onto a single chip, the increased resistance and RC-delay at the smaller scale has become a significant factor affecting chip performance. Advanced Interconnects for ULSI Technology is dedicated to the materials and methods which might be suitable replacements. It covers a broad range of topics, from physical principles to design, fabrication, characterization, and application of new materials for nano-interconnects, and discusses: Interconnect functions, characterisations, electrical properties and wiring requirements Low-k materials: fundamentals, advances and mechanical properties Conductive layers and barriers Integration and reliability including mechanical reliability, electromigration and electrical breakdown New approaches including 3D, optical, wireless interchip, and carbon-based interconnects Intended for postgraduate students and researchers, in academia and industry, this book provides a critical overview of the enabling technology at the heart of the future development of computer chips.
Recent Advances in PMOS Negative Bias Temperature Instability
Author: Souvik Mahapatra
Publisher: Springer Nature
ISBN: 9811661200
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
This book covers advances in Negative Bias Temperature Instability (NBTI) and will prove useful to researchers and professionals in the semiconductor devices areas. NBTI continues to remain as an important reliability issue for CMOS transistors and circuits. Development of NBTI resilient technology relies on utilizing suitable stress conditions, artifact free measurements and accurate physics-based models for the reliable determination of degradation at end-of-life, as well as understanding the process, material and device architectural impacts. This book discusses: Ultra-fast measurements and modelling of parametric drift due to NBTI in different transistor architectures: planar bulk and FDSOI p-MOSFETs, p-FinFETs and GAA-SNS p-FETs, with Silicon and Silicon Germanium channels. BTI Analysis Tool (BAT), a comprehensive physics-based framework, to model the measured time kinetics of parametric drift during and after DC and AC stress, at different stress and recovery biases and temperature, as well as pulse duty cycle and frequency. The Reaction Diffusion (RD) model is used for generated interface traps, Transient Trap Occupancy Model (TTOM) for charge occupancy of the generated interface traps and their contribution, Activated Barrier Double Well Thermionic (ABDWT) model for hole trapping in pre-existing bulk gate insulator traps, and Reaction Diffusion Drift (RDD) model for bulk trap generation in the BAT framework; NBTI parametric drift is due to uncorrelated contributions from the trap generation (interface, bulk) and trapping processes. Analysis and modelling of Nitrogen incorporation into the gate insulator, Germanium incorporation into the channel, and mechanical stress effects due to changes in the transistor layout or device dimensions; similarities and differences of (100) surface dominated planar and GAA MOSFETs and (110) sidewall dominated FinFETs are analysed.
Publisher: Springer Nature
ISBN: 9811661200
Category : Technology & Engineering
Languages : en
Pages : 322
Book Description
This book covers advances in Negative Bias Temperature Instability (NBTI) and will prove useful to researchers and professionals in the semiconductor devices areas. NBTI continues to remain as an important reliability issue for CMOS transistors and circuits. Development of NBTI resilient technology relies on utilizing suitable stress conditions, artifact free measurements and accurate physics-based models for the reliable determination of degradation at end-of-life, as well as understanding the process, material and device architectural impacts. This book discusses: Ultra-fast measurements and modelling of parametric drift due to NBTI in different transistor architectures: planar bulk and FDSOI p-MOSFETs, p-FinFETs and GAA-SNS p-FETs, with Silicon and Silicon Germanium channels. BTI Analysis Tool (BAT), a comprehensive physics-based framework, to model the measured time kinetics of parametric drift during and after DC and AC stress, at different stress and recovery biases and temperature, as well as pulse duty cycle and frequency. The Reaction Diffusion (RD) model is used for generated interface traps, Transient Trap Occupancy Model (TTOM) for charge occupancy of the generated interface traps and their contribution, Activated Barrier Double Well Thermionic (ABDWT) model for hole trapping in pre-existing bulk gate insulator traps, and Reaction Diffusion Drift (RDD) model for bulk trap generation in the BAT framework; NBTI parametric drift is due to uncorrelated contributions from the trap generation (interface, bulk) and trapping processes. Analysis and modelling of Nitrogen incorporation into the gate insulator, Germanium incorporation into the channel, and mechanical stress effects due to changes in the transistor layout or device dimensions; similarities and differences of (100) surface dominated planar and GAA MOSFETs and (110) sidewall dominated FinFETs are analysed.
Handbook of Thin Film Deposition
Author: Krishna Seshan
Publisher: William Andrew
ISBN: 0128123125
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Handbook of Thin Film Deposition, Fourth Edition, is a comprehensive reference focusing on thin film technologies and applications used in the semiconductor industry and the closely related areas of thin film deposition, thin film micro properties, photovoltaic solar energy applications, materials for memory applications and methods for thin film optical processes. The book is broken up into three sections: scaling, equipment and processing, and applications. In this newly revised edition, the handbook will also explore the limits of thin film applications, most notably as they relate to applications in manufacturing, materials, design and reliability. - Offers a practical survey of thin film technologies aimed at engineers and managers involved in all stages of the process: design, fabrication, quality assurance, applications and the limitations faced by those processes - Covers core processes and applications in the semiconductor industry and new developments within the photovoltaic and optical thin film industries - Features a new chapter discussing Gates Dielectrics
Publisher: William Andrew
ISBN: 0128123125
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
Handbook of Thin Film Deposition, Fourth Edition, is a comprehensive reference focusing on thin film technologies and applications used in the semiconductor industry and the closely related areas of thin film deposition, thin film micro properties, photovoltaic solar energy applications, materials for memory applications and methods for thin film optical processes. The book is broken up into three sections: scaling, equipment and processing, and applications. In this newly revised edition, the handbook will also explore the limits of thin film applications, most notably as they relate to applications in manufacturing, materials, design and reliability. - Offers a practical survey of thin film technologies aimed at engineers and managers involved in all stages of the process: design, fabrication, quality assurance, applications and the limitations faced by those processes - Covers core processes and applications in the semiconductor industry and new developments within the photovoltaic and optical thin film industries - Features a new chapter discussing Gates Dielectrics
Fundamentals of Bias Temperature Instability in MOS Transistors
Author: Souvik Mahapatra
Publisher: Springer
ISBN: 8132225082
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
This book aims to cover different aspects of Bias Temperature Instability (BTI). BTI remains as an important reliability concern for CMOS transistors and circuits. Development of BTI resilient technology relies on utilizing artefact-free stress and measurement methods and suitable physics-based models for accurate determination of degradation at end-of-life and understanding the gate insulator process impact on BTI. This book discusses different ultra-fast characterization techniques for recovery artefact free BTI measurements. It also covers different direct measurements techniques to access pre-existing and newly generated gate insulator traps responsible for BTI. The book provides a consistent physical framework for NBTI and PBTI respectively for p- and n- channel MOSFETs, consisting of trap generation and trapping. A physics-based compact model is presented to estimate measured BTI degradation in planar Si MOSFETs having differently processed SiON and HKMG gate insulators, in planar SiGe MOSFETs and also in Si FinFETs. The contents also include a detailed investigation of the gate insulator process dependence of BTI in differently processed SiON and HKMG MOSFETs. The book then goes on to discuss Reaction-Diffusion (RD) model to estimate generation of new traps for DC and AC NBTI stress and Transient Trap Occupancy Model (TTOM) to estimate charge occupancy of generated traps and their contribution to BTI degradation. Finally, a comprehensive NBTI modeling framework including TTOM enabled RD model and hole trapping to predict time evolution of BTI degradation and recovery during and after DC stress for different stress and recovery biases and temperature, during consecutive arbitrary stress and recovery cycles and during AC stress at different frequency and duty cycle. The contents of this book should prove useful to academia and professionals alike.
Publisher: Springer
ISBN: 8132225082
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
This book aims to cover different aspects of Bias Temperature Instability (BTI). BTI remains as an important reliability concern for CMOS transistors and circuits. Development of BTI resilient technology relies on utilizing artefact-free stress and measurement methods and suitable physics-based models for accurate determination of degradation at end-of-life and understanding the gate insulator process impact on BTI. This book discusses different ultra-fast characterization techniques for recovery artefact free BTI measurements. It also covers different direct measurements techniques to access pre-existing and newly generated gate insulator traps responsible for BTI. The book provides a consistent physical framework for NBTI and PBTI respectively for p- and n- channel MOSFETs, consisting of trap generation and trapping. A physics-based compact model is presented to estimate measured BTI degradation in planar Si MOSFETs having differently processed SiON and HKMG gate insulators, in planar SiGe MOSFETs and also in Si FinFETs. The contents also include a detailed investigation of the gate insulator process dependence of BTI in differently processed SiON and HKMG MOSFETs. The book then goes on to discuss Reaction-Diffusion (RD) model to estimate generation of new traps for DC and AC NBTI stress and Transient Trap Occupancy Model (TTOM) to estimate charge occupancy of generated traps and their contribution to BTI degradation. Finally, a comprehensive NBTI modeling framework including TTOM enabled RD model and hole trapping to predict time evolution of BTI degradation and recovery during and after DC stress for different stress and recovery biases and temperature, during consecutive arbitrary stress and recovery cycles and during AC stress at different frequency and duty cycle. The contents of this book should prove useful to academia and professionals alike.
Electromigration in Thin Films and Electronic Devices
Author: Choong-Un Kim
Publisher: Elsevier
ISBN: 0857093754
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
Understanding and limiting electromigration in thin films is essential to the continued development of advanced copper interconnects for integrated circuits. Electromigration in thin films and electronic devices provides an up-to-date review of key topics in this commercially important area.Part one consists of three introductory chapters, covering modelling of electromigration phenomena, modelling electromigration using the peridynamics approach and simulation and x-ray microbeam studies of electromigration. Part two deals with electromigration issues in copper interconnects, including x-ray microbeam analysis, voiding, microstructural evolution and electromigration failure. Finally, part three covers electromigration in solder, with chapters discussing topics such as electromigration-induced microstructural evolution and electromigration in flip-chip solder joints.With its distinguished editor and international team of contributors, Electromigration in thin films and electronic devices is an essential reference for materials scientists and engineers in the microelectronics, packaging and interconnects industries, as well as all those with an academic research interest in the field. - Provides up-to-date coverage of the continued development of advanced copper interconnects for integrated circuits - Comprehensively reviews modelling of electromigration phenomena, modelling electromigration using the peridynamics approach and simulation, and x-ray microbeam studies of electromigration - Deals with electromigration issues in copper interconnects, including x-ray microbeam analysis, voiding, microstructural evolution and electromigration failure
Publisher: Elsevier
ISBN: 0857093754
Category : Technology & Engineering
Languages : en
Pages : 353
Book Description
Understanding and limiting electromigration in thin films is essential to the continued development of advanced copper interconnects for integrated circuits. Electromigration in thin films and electronic devices provides an up-to-date review of key topics in this commercially important area.Part one consists of three introductory chapters, covering modelling of electromigration phenomena, modelling electromigration using the peridynamics approach and simulation and x-ray microbeam studies of electromigration. Part two deals with electromigration issues in copper interconnects, including x-ray microbeam analysis, voiding, microstructural evolution and electromigration failure. Finally, part three covers electromigration in solder, with chapters discussing topics such as electromigration-induced microstructural evolution and electromigration in flip-chip solder joints.With its distinguished editor and international team of contributors, Electromigration in thin films and electronic devices is an essential reference for materials scientists and engineers in the microelectronics, packaging and interconnects industries, as well as all those with an academic research interest in the field. - Provides up-to-date coverage of the continued development of advanced copper interconnects for integrated circuits - Comprehensively reviews modelling of electromigration phenomena, modelling electromigration using the peridynamics approach and simulation, and x-ray microbeam studies of electromigration - Deals with electromigration issues in copper interconnects, including x-ray microbeam analysis, voiding, microstructural evolution and electromigration failure
Ageing of Integrated Circuits
Author: Basel Halak
Publisher: Springer Nature
ISBN: 3030237818
Category : Technology & Engineering
Languages : en
Pages : 231
Book Description
This book provides comprehensive coverage of the latest research into integrated circuits’ ageing, explaining the causes of this phenomenon, describing its effects on electronic systems, and providing mitigation techniques to build ageing-resilient circuits.
Publisher: Springer Nature
ISBN: 3030237818
Category : Technology & Engineering
Languages : en
Pages : 231
Book Description
This book provides comprehensive coverage of the latest research into integrated circuits’ ageing, explaining the causes of this phenomenon, describing its effects on electronic systems, and providing mitigation techniques to build ageing-resilient circuits.
Reliability and Failure of Electronic Materials and Devices
Author: Milton Ohring
Publisher: Academic Press
ISBN: 0080575528
Category : Technology & Engineering
Languages : en
Pages : 759
Book Description
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites
Publisher: Academic Press
ISBN: 0080575528
Category : Technology & Engineering
Languages : en
Pages : 759
Book Description
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites
Dependable Multicore Architectures at Nanoscale
Author: Marco Ottavi
Publisher: Springer
ISBN: 3319544225
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
This book provides comprehensive coverage of the dependability challenges in today's advanced computing systems. It is an in-depth discussion of all the technological and design-level techniques that may be used to overcome these issues and analyzes various dependability-assessment methods. The impact of individual application scenarios on the definition of challenges and solutions is considered so that the designer can clearly assess the problems and adjust the solution based on the specifications in question. The book is composed of three sections, beginning with an introduction to current dependability challenges arising in complex computing systems implemented with nanoscale technologies, and of the effect of the application scenario. The second section details all the fault-tolerance techniques that are applicable in the manufacture of reliable advanced computing devices. Different levels, from technology-level fault avoidance to the use of error correcting codes and system-level checkpointing are introduced and explained as applicable to the different application scenario requirements. Finally the third section proposes a roadmap of future trends in and perspectives on the dependability and manufacturability of advanced computing systems from the special point of view of industrial stakeholders. Dependable Multicore Architectures at Nanoscale showcases the original ideas and concepts introduced into the field of nanoscale manufacturing and systems reliability over nearly four years of work within COST Action IC1103 MEDIAN, a think-tank with participants from 27 countries. Academic researchers and graduate students working in multi-core computer systems and their manufacture will find this book of interest as will industrial design and manufacturing engineers working in VLSI companies.
Publisher: Springer
ISBN: 3319544225
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
This book provides comprehensive coverage of the dependability challenges in today's advanced computing systems. It is an in-depth discussion of all the technological and design-level techniques that may be used to overcome these issues and analyzes various dependability-assessment methods. The impact of individual application scenarios on the definition of challenges and solutions is considered so that the designer can clearly assess the problems and adjust the solution based on the specifications in question. The book is composed of three sections, beginning with an introduction to current dependability challenges arising in complex computing systems implemented with nanoscale technologies, and of the effect of the application scenario. The second section details all the fault-tolerance techniques that are applicable in the manufacture of reliable advanced computing devices. Different levels, from technology-level fault avoidance to the use of error correcting codes and system-level checkpointing are introduced and explained as applicable to the different application scenario requirements. Finally the third section proposes a roadmap of future trends in and perspectives on the dependability and manufacturability of advanced computing systems from the special point of view of industrial stakeholders. Dependable Multicore Architectures at Nanoscale showcases the original ideas and concepts introduced into the field of nanoscale manufacturing and systems reliability over nearly four years of work within COST Action IC1103 MEDIAN, a think-tank with participants from 27 countries. Academic researchers and graduate students working in multi-core computer systems and their manufacture will find this book of interest as will industrial design and manufacturing engineers working in VLSI companies.
Transient-Induced Latchup in CMOS Integrated Circuits
Author: Ming-Dou Ker
Publisher: John Wiley & Sons
ISBN: 0470824085
Category : Technology & Engineering
Languages : en
Pages : 265
Book Description
The book all semiconductor device engineers must read to gain a practical feel for latchup-induced failure to produce lower-cost and higher-density chips. Transient-Induced Latchup in CMOS Integrated Circuits equips the practicing engineer with all the tools needed to address this regularly occurring problem while becoming more proficient at IC layout. Ker and Hsu introduce the phenomenon and basic physical mechanism of latchup, explaining the critical issues that have resurfaced for CMOS technologies. Once readers can gain an understanding of the standard practices for TLU, Ker and Hsu discuss the physical mechanism of TLU under a system-level ESD test, while introducing an efficient component-level TLU measurement setup. The authors then present experimental methodologies to extract safe and area-efficient compact layout rules for latchup prevention, including layout rules for I/O cells, internal circuits, and between I/O and internal circuits. The book concludes with an appendix giving a practical example of extracting layout rules and guidelines for latchup prevention in a 0.18-micrometer 1.8V/3.3V silicided CMOS process. Presents real cases and solutions that occur in commercial CMOS IC chips Equips engineers with the skills to conserve chip layout area and decrease time-to-market Written by experts with real-world experience in circuit design and failure analysis Distilled from numerous courses taught by the authors in IC design houses worldwide The only book to introduce TLU under system-level ESD and EFT tests This book is essential for practicing engineers involved in IC design, IC design management, system and application design, reliability, and failure analysis. Undergraduate and postgraduate students, specializing in CMOS circuit design and layout, will find this book to be a valuable introduction to real-world industry problems and a key reference during the course of their careers.
Publisher: John Wiley & Sons
ISBN: 0470824085
Category : Technology & Engineering
Languages : en
Pages : 265
Book Description
The book all semiconductor device engineers must read to gain a practical feel for latchup-induced failure to produce lower-cost and higher-density chips. Transient-Induced Latchup in CMOS Integrated Circuits equips the practicing engineer with all the tools needed to address this regularly occurring problem while becoming more proficient at IC layout. Ker and Hsu introduce the phenomenon and basic physical mechanism of latchup, explaining the critical issues that have resurfaced for CMOS technologies. Once readers can gain an understanding of the standard practices for TLU, Ker and Hsu discuss the physical mechanism of TLU under a system-level ESD test, while introducing an efficient component-level TLU measurement setup. The authors then present experimental methodologies to extract safe and area-efficient compact layout rules for latchup prevention, including layout rules for I/O cells, internal circuits, and between I/O and internal circuits. The book concludes with an appendix giving a practical example of extracting layout rules and guidelines for latchup prevention in a 0.18-micrometer 1.8V/3.3V silicided CMOS process. Presents real cases and solutions that occur in commercial CMOS IC chips Equips engineers with the skills to conserve chip layout area and decrease time-to-market Written by experts with real-world experience in circuit design and failure analysis Distilled from numerous courses taught by the authors in IC design houses worldwide The only book to introduce TLU under system-level ESD and EFT tests This book is essential for practicing engineers involved in IC design, IC design management, system and application design, reliability, and failure analysis. Undergraduate and postgraduate students, specializing in CMOS circuit design and layout, will find this book to be a valuable introduction to real-world industry problems and a key reference during the course of their careers.