Hyperspectral Image Analysis PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Hyperspectral Image Analysis PDF full book. Access full book title Hyperspectral Image Analysis by Saurabh Prasad. Download full books in PDF and EPUB format.

Hyperspectral Image Analysis

Hyperspectral Image Analysis PDF Author: Saurabh Prasad
Publisher: Springer Nature
ISBN: 3030386171
Category : Computers
Languages : en
Pages : 464

Book Description
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.

Hyperspectral Image Analysis

Hyperspectral Image Analysis PDF Author: Saurabh Prasad
Publisher: Springer Nature
ISBN: 3030386171
Category : Computers
Languages : en
Pages : 464

Book Description
This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.

Techniques and Applications of Hyperspectral Image Analysis

Techniques and Applications of Hyperspectral Image Analysis PDF Author: Hans Grahn
Publisher: John Wiley & Sons
ISBN: 9780470010877
Category : Science
Languages : en
Pages : 390

Book Description
Techniques and Applications of Hyperspectral Image Analysis gives an introduction to the field of image analysis using hyperspectral techniques, and includes definitions and instrument descriptions. Other imaging topics that are covered are segmentation, regression and classification. The book discusses how high quality images of large data files can be structured and archived. Imaging techniques also demand accurate calibration, and are covered in sections about multivariate calibration techniques. The book explains the most important instruments for hyperspectral imaging in more technical detail. A number of applications from medical and chemical imaging are presented and there is an emphasis on data analysis including modeling, data visualization, model testing and statistical interpretation.

Deep Learning for Hyperspectral Image Analysis and Classification

Deep Learning for Hyperspectral Image Analysis and Classification PDF Author: Linmi Tao
Publisher: Springer Nature
ISBN: 9813344202
Category : Computers
Languages : en
Pages : 207

Book Description
This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly. This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are the original contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.

Hyperspectral Imaging Analysis and Applications for Food Quality

Hyperspectral Imaging Analysis and Applications for Food Quality PDF Author: N.C. Basantia
Publisher: CRC Press
ISBN: 1351805940
Category : Technology & Engineering
Languages : en
Pages : 482

Book Description
In processing food, hyperspectral imaging, combined with intelligent software, enables digital sorters (or optical sorters) to identify and remove defects and foreign material that are invisible to traditional camera and laser sorters. Hyperspectral Imaging Analysis and Applications for Food Quality explores the theoretical and practical issues associated with the development, analysis, and application of essential image processing algorithms in order to exploit hyperspectral imaging for food quality evaluations. It outlines strategies and essential image processing routines that are necessary for making the appropriate decision during detection, classification, identification, quantification, and/or prediction processes. Features Covers practical issues associated with the development, analysis, and application of essential image processing for food quality applications Surveys the breadth of different image processing approaches adopted over the years in attempting to implement hyperspectral imaging for food quality monitoring Explains the working principles of hyperspectral systems as well as the basic concept and structure of hyperspectral data Describes the different approaches used during image acquisition, data collection, and visualization The book is divided into three sections. Section I discusses the fundamentals of Imaging Systems: How can hyperspectral image cube acquisition be optimized? Also, two chapters deal with image segmentation, data extraction, and treatment. Seven chapters comprise Section II, which deals with Chemometrics. One explains the fundamentals of multivariate analysis and techniques while in six other chapters the reader will find information on and applications of a number of chemometric techniques: principal component analysis, partial least squares analysis, linear discriminant model, support vector machines, decision trees, and artificial neural networks. In the last section, Applications, numerous examples are given of applications of hyperspectral imaging systems in fish, meat, fruits, vegetables, medicinal herbs, dairy products, beverages, and food additives.

Hyperspectral Imaging

Hyperspectral Imaging PDF Author:
Publisher: Elsevier
ISBN: 0444639780
Category : Science
Languages : en
Pages : 802

Book Description
Hyperspectral Imaging, Volume 32, presents a comprehensive exploration of the different analytical methodologies applied on hyperspectral imaging and a state-of-the-art analysis of applications in different scientific and industrial areas. This book presents, for the first time, a comprehensive collection of the main multivariate algorithms used for hyperspectral image analysis in different fields of application. The benefits, drawbacks and suitability of each are fully discussed, along with examples of their application. Users will find state-of-the art information on the machinery for hyperspectral image acquisition, along with a critical assessment of the usage of hyperspectral imaging in diverse scientific fields. - Provides a comprehensive roadmap of hyperspectral image analysis, with benefits and considerations for each method discussed - Covers state-of-the-art applications in different scientific fields - Discusses the implementation of hyperspectral devices in different environments

Hyperspectral Imaging Technology in Food and Agriculture

Hyperspectral Imaging Technology in Food and Agriculture PDF Author: Bosoon Park
Publisher: Springer
ISBN: 1493928368
Category : Technology & Engineering
Languages : en
Pages : 404

Book Description
Hyperspectral imaging or imaging spectroscopy is a novel technology for acquiring and analysing an image of a real scene by computers and other devices in order to obtain quantitative information for quality evaluation and process control. Image processing and analysis is the core technique in computer vision. With the continuous development in hardware and software for image processing and analysis, the application of hyperspectral imaging has been extended to the safety and quality evaluation of meat and produce. Especially in recent years, hyperspectral imaging has attracted much research and development attention, as a result rapid scientific and technological advances have increasingly taken place in food and agriculture, especially on safety and quality inspection, classification and evaluation of a wide range of food products, illustrating the great advantages of using the technology for objective, rapid, non-destructive and automated safety inspection as well as quality control. Therefore, as the first reference book in the area, Hyperspectral Imaging Technology in Food and Agriculture focuses on these recent advances. The book is divided into three parts, which begins with an outline of the fundamentals of the technology, followed by full covering of the application in the most researched areas of meats, fruits, vegetables, grains and other foods, which mostly covers food safety and quality as well as remote sensing applicable for crop production. Hyperspectral Imaging Technology in Food and Agriculture is written by international peers who have both academic and professional credentials, with each chapter addressing in detail one aspect of the relevant technology, thus highlighting the truly international nature of the work. Therefore the book should provide the engineer and technologist working in research, development, and operations in the food and agricultural industry with critical, comprehensive and readily accessible information on the art and science of hyperspectral imaging technology. It should also serve as an essential reference source to undergraduate and postgraduate students and researchers in universities and research institutions.

Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data

Advanced Image Processing Techniques for Remotely Sensed Hyperspectral Data PDF Author: Pramod K. Varshney
Publisher: Springer
ISBN: 9783662056066
Category : Science
Languages : en
Pages : 323

Book Description
The first of its kind, this book reviews image processing tools and techniques including Independent Component Analysis, Mutual Information, Markov Random Field Models and Support Vector Machines. The book also explores a number of experimental examples based on a variety of remote sensors. The book will be useful to people involved in hyperspectral imaging research, as well as by remote-sensing data like geologists, hydrologists, environmental scientists, civil engineers and computer scientists.

Remote Sensing Digital Image Analysis

Remote Sensing Digital Image Analysis PDF Author: John A. Richards
Publisher: Springer Science & Business Media
ISBN: 3642880878
Category : Science
Languages : en
Pages : 372

Book Description
Possibly the greatest change confronting the practitioner and student of remote sensing in the period since the first edition of this text appeared in 1986 has been the enormous improvement in accessibility to image processing technology. Falling hardware and software costs, combined with an increase in functionality through the development of extremely versatile user interfaces, has meant that even the user unskilled in computing now has immediate and ready access to powerful and flexible means for digital image analysis and enhancement. An understanding, at algorithmic level, of the various methods for image processing has become therefore even more important in the past few years to ensure the full capability of digital image processing is utilised. This period has also been a busy one in relation to digital data supply. Several nations have become satellite data gatherers and providers, using both optical and microwave technology. Practitioners and researchers are now faced, therefore, with the need to be able to process imagery from several sensors, together with other forms of spatial data. This has been driven, to an extent, by developments in Geographic Information Systems (GIS) which, in tum, have led to the appearance of newer image processing procedures as adjuncts to more traditional approaches.

Hyperspectral Data Processing

Hyperspectral Data Processing PDF Author: Chein-I Chang
Publisher: John Wiley & Sons
ISBN: 1118269772
Category : Technology & Engineering
Languages : en
Pages : 1180

Book Description
Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap. Many results in this book are either new or have not been explored, presented, or published in the public domain. These include various aspects of endmember extraction, unsupervised linear spectral mixture analysis, hyperspectral information compression, hyperspectral signal coding and characterization, as well as applications to conceal target detection, multispectral imaging, and magnetic resonance imaging. Hyperspectral Data Processing contains eight major sections: Part I: provides fundamentals of hyperspectral data processing Part II: offers various algorithm designs for endmember extraction Part III: derives theory for supervised linear spectral mixture analysis Part IV: designs unsupervised methods for hyperspectral image analysis Part V: explores new concepts on hyperspectral information compression Parts VI & VII: develops techniques for hyperspectral signal coding and characterization Part VIII: presents applications in multispectral imaging and magnetic resonance imaging Hyperspectral Data Processing compiles an algorithm compendium with MATLAB codes in an appendix to help readers implement many important algorithms developed in this book and write their own program codes without relying on software packages. Hyperspectral Data Processing is a valuable reference for those who have been involved with hyperspectral imaging and its techniques, as well those who are new to the subject.

Hyperspectral Imaging Remote Sensing

Hyperspectral Imaging Remote Sensing PDF Author: Dimitris G. Manolakis
Publisher: Cambridge University Press
ISBN: 1107083664
Category : Computers
Languages : en
Pages : 701

Book Description
Understand the seminal principles, current techniques, and tools of imaging spectroscopy with this self-contained introductory guide.