Author: Patrick Chassaing
Publisher: Springer Nature
ISBN: 3031100867
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
This textbook provides a coherent and structured overview of fluid mechanics, a discipline concerned with many natural phenomena and at the very heart of the most diversified industrial applications and human activities. The balance between phenomenological analysis, physical conceptualization and mathematical formulation serve both as a unifying educational marker and as a methodological guide to the three parts of the work. The thermo-mechanical motion equations of a homogeneous single-phase fluid are established, from which flow models (perfect fluid, viscous) and motion classes (isovolume, barotropic, irrotational, etc.) are derived. Incompressible, potential flows and compressible flows, both in an isentropic evolution and shock, of an ideal inviscid fluid are addressed in the second part. The viscous fluid is the subject of the last one, with the creeping motion regime and the laminar, dynamic and thermal boundary layer. Historical perspectives are included whenever they enrich the understanding of modern concepts. Many examples, chosen for their pedagogical relevance, are dealt with in exercises. The book is intended as a teaching tool for undergraduate students, wishing to acquire a first command of fluid mechanics, as well as graduates in advanced courses and engineers in other fields, concerned with completing what is sometimes a scattered body of knowledge.
Fundamentals of Fluid Mechanics
Author: Patrick Chassaing
Publisher: Springer Nature
ISBN: 3031100867
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
This textbook provides a coherent and structured overview of fluid mechanics, a discipline concerned with many natural phenomena and at the very heart of the most diversified industrial applications and human activities. The balance between phenomenological analysis, physical conceptualization and mathematical formulation serve both as a unifying educational marker and as a methodological guide to the three parts of the work. The thermo-mechanical motion equations of a homogeneous single-phase fluid are established, from which flow models (perfect fluid, viscous) and motion classes (isovolume, barotropic, irrotational, etc.) are derived. Incompressible, potential flows and compressible flows, both in an isentropic evolution and shock, of an ideal inviscid fluid are addressed in the second part. The viscous fluid is the subject of the last one, with the creeping motion regime and the laminar, dynamic and thermal boundary layer. Historical perspectives are included whenever they enrich the understanding of modern concepts. Many examples, chosen for their pedagogical relevance, are dealt with in exercises. The book is intended as a teaching tool for undergraduate students, wishing to acquire a first command of fluid mechanics, as well as graduates in advanced courses and engineers in other fields, concerned with completing what is sometimes a scattered body of knowledge.
Publisher: Springer Nature
ISBN: 3031100867
Category : Technology & Engineering
Languages : en
Pages : 579
Book Description
This textbook provides a coherent and structured overview of fluid mechanics, a discipline concerned with many natural phenomena and at the very heart of the most diversified industrial applications and human activities. The balance between phenomenological analysis, physical conceptualization and mathematical formulation serve both as a unifying educational marker and as a methodological guide to the three parts of the work. The thermo-mechanical motion equations of a homogeneous single-phase fluid are established, from which flow models (perfect fluid, viscous) and motion classes (isovolume, barotropic, irrotational, etc.) are derived. Incompressible, potential flows and compressible flows, both in an isentropic evolution and shock, of an ideal inviscid fluid are addressed in the second part. The viscous fluid is the subject of the last one, with the creeping motion regime and the laminar, dynamic and thermal boundary layer. Historical perspectives are included whenever they enrich the understanding of modern concepts. Many examples, chosen for their pedagogical relevance, are dealt with in exercises. The book is intended as a teaching tool for undergraduate students, wishing to acquire a first command of fluid mechanics, as well as graduates in advanced courses and engineers in other fields, concerned with completing what is sometimes a scattered body of knowledge.
Capillary Flows in Heterogeneous and Random Porous Media
Author: Rachid Ababou
Publisher: John Wiley & Sons
ISBN: 1848215282
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Capillary phenomena occur in both natural and human-made systems, from equilibria in the presence of solids (grains, walls, metal wires) to multiphase flows in heterogeneous and fractured porous media. This book, composed of two volumes, develops fluid mechanics approaches for two immiscible fluids (water/air or water/oil) in the presence of solids (tubes, joints, grains, porous media). Their hydrodynamics are typically dominated by capillarity and viscous dissipation. This first volume presents the basic concepts and investigates two-phase equilibria, before analyzing two-phase hydrodynamics in discrete and/or statistical systems (tubular pores, planar joints). It then studies flows in heterogeneous and stratified porous media, such as soils and rocks, based on Darcy’s law. This analysis includes unsaturated flow (Richards equation) and two-phase flow (Muskat equations). Overall, the two volumes contain basic physical concepts, theoretical analyses, field investigations and statistical and numerical approaches to capillary-driven equilibria and flows in heterogeneous systems
Publisher: John Wiley & Sons
ISBN: 1848215282
Category : Technology & Engineering
Languages : en
Pages : 420
Book Description
Capillary phenomena occur in both natural and human-made systems, from equilibria in the presence of solids (grains, walls, metal wires) to multiphase flows in heterogeneous and fractured porous media. This book, composed of two volumes, develops fluid mechanics approaches for two immiscible fluids (water/air or water/oil) in the presence of solids (tubes, joints, grains, porous media). Their hydrodynamics are typically dominated by capillarity and viscous dissipation. This first volume presents the basic concepts and investigates two-phase equilibria, before analyzing two-phase hydrodynamics in discrete and/or statistical systems (tubular pores, planar joints). It then studies flows in heterogeneous and stratified porous media, such as soils and rocks, based on Darcy’s law. This analysis includes unsaturated flow (Richards equation) and two-phase flow (Muskat equations). Overall, the two volumes contain basic physical concepts, theoretical analyses, field investigations and statistical and numerical approaches to capillary-driven equilibria and flows in heterogeneous systems
Teaching Physics
Author: L. Viennot
Publisher: Springer Science & Business Media
ISBN: 9401001219
Category : Science
Languages : en
Pages : 264
Book Description
This book seeks to narrow the current gap between educational research and classroom practice in the teaching of physics. It makes a detailed analysis of research findings derived from experiments involving pupils, students and teachers in the field. Clear guidelines are laid down for the development and evaluation of sequences, drawing attention to "critical details" of the practice of teaching that may spell success or failure for the project. It is intended for researchers in science teaching, teacher trainers and teachers of physics.
Publisher: Springer Science & Business Media
ISBN: 9401001219
Category : Science
Languages : en
Pages : 264
Book Description
This book seeks to narrow the current gap between educational research and classroom practice in the teaching of physics. It makes a detailed analysis of research findings derived from experiments involving pupils, students and teachers in the field. Clear guidelines are laid down for the development and evaluation of sequences, drawing attention to "critical details" of the practice of teaching that may spell success or failure for the project. It is intended for researchers in science teaching, teacher trainers and teachers of physics.
Introduction to Liquid State Physics
Author: Norman Henry March
Publisher: World Scientific
ISBN: 9789810246525
Category : Science
Languages : en
Pages : 454
Book Description
This important book provides an introduction to the liquid state. A qualitative description of liquid properties is first given, followed by detailed chapters on thermodynamics, liquid structure in relation to interaction forces and transport properties such as diffusion and viscosity. Treatment of complex fluids such as anisotropic liquid crystals and polymers, and of technically important topics such as non-Newtonian and turbulent flows, is included. Surface properties and characteristics of the liquid-vapour critical point are also discussed. While the book focuses on classical liquids, the final chapter deals with quantal fluids.
Publisher: World Scientific
ISBN: 9789810246525
Category : Science
Languages : en
Pages : 454
Book Description
This important book provides an introduction to the liquid state. A qualitative description of liquid properties is first given, followed by detailed chapters on thermodynamics, liquid structure in relation to interaction forces and transport properties such as diffusion and viscosity. Treatment of complex fluids such as anisotropic liquid crystals and polymers, and of technically important topics such as non-Newtonian and turbulent flows, is included. Surface properties and characteristics of the liquid-vapour critical point are also discussed. While the book focuses on classical liquids, the final chapter deals with quantal fluids.
A Physical Introduction to Suspension Dynamics
Author: Élisabeth Guazzelli
Publisher: Cambridge University Press
ISBN: 1139503936
Category : Science
Languages : en
Pages : 243
Book Description
Understanding the behaviour of particles suspended in a fluid has many important applications across a range of fields, including engineering and geophysics. Comprising two main parts, this book begins with the well-developed theory of particles in viscous fluids, i.e. microhydrodynamics, particularly for single- and pair-body dynamics. Part II considers many-body dynamics, covering shear flows and sedimentation, bulk flow properties and collective phenomena. An interlude between the two parts provides the basic statistical techniques needed to employ the results of the first (microscopic) in the second (macroscopic). The authors introduce theoretical, mathematical concepts through concrete examples, making the material accessible to non-mathematicians. They also include some of the many open questions in the field to encourage further study. Consequently, this is an ideal introduction for students and researchers from other disciplines who are approaching suspension dynamics for the first time.
Publisher: Cambridge University Press
ISBN: 1139503936
Category : Science
Languages : en
Pages : 243
Book Description
Understanding the behaviour of particles suspended in a fluid has many important applications across a range of fields, including engineering and geophysics. Comprising two main parts, this book begins with the well-developed theory of particles in viscous fluids, i.e. microhydrodynamics, particularly for single- and pair-body dynamics. Part II considers many-body dynamics, covering shear flows and sedimentation, bulk flow properties and collective phenomena. An interlude between the two parts provides the basic statistical techniques needed to employ the results of the first (microscopic) in the second (macroscopic). The authors introduce theoretical, mathematical concepts through concrete examples, making the material accessible to non-mathematicians. They also include some of the many open questions in the field to encourage further study. Consequently, this is an ideal introduction for students and researchers from other disciplines who are approaching suspension dynamics for the first time.
Physics of Biomaterials: Fluctuations, Selfassembly and Evolution
Author: T. Riste
Publisher: Springer Science & Business Media
ISBN: 9400917228
Category : Science
Languages : en
Pages : 387
Book Description
Recent years have seen a growing interest in and activity at the interface between physics and biology, with the realization that both subjects have a great deal to learn from and to teach to one another. A particularly promising aspect of this interface concerns the area of cooperative phenomena and phase transitions. The present book addresses both the structure and motion of biological materials and the increasingly complex behaviour that arises out of interactions in large systems, giving rise to self organization, adaptation, selection and evolution: concepts of interest not only to biology and living systems but also within condensed matter physics. The approach adopted by Physics of Biomaterials: Fluctuations, Self Assembly and Evolution is tutorial, but the book is fully up to date with the latest research. Written at a level appropriate to graduate researchers, preferably with a background either in condensed matter physics or theoretical or physically-oriented experimental biology.
Publisher: Springer Science & Business Media
ISBN: 9400917228
Category : Science
Languages : en
Pages : 387
Book Description
Recent years have seen a growing interest in and activity at the interface between physics and biology, with the realization that both subjects have a great deal to learn from and to teach to one another. A particularly promising aspect of this interface concerns the area of cooperative phenomena and phase transitions. The present book addresses both the structure and motion of biological materials and the increasingly complex behaviour that arises out of interactions in large systems, giving rise to self organization, adaptation, selection and evolution: concepts of interest not only to biology and living systems but also within condensed matter physics. The approach adopted by Physics of Biomaterials: Fluctuations, Self Assembly and Evolution is tutorial, but the book is fully up to date with the latest research. Written at a level appropriate to graduate researchers, preferably with a background either in condensed matter physics or theoretical or physically-oriented experimental biology.
The Elements of Mechanics
Author: James Renwick
Publisher:
ISBN:
Category : Mechanics
Languages : en
Pages : 574
Book Description
Publisher:
ISBN:
Category : Mechanics
Languages : en
Pages : 574
Book Description
Instructions to Marine Meteorological Observers
Author: United States. Weather Bureau
Publisher:
ISBN:
Category : Marine meteorology
Languages : en
Pages : 132
Book Description
Publisher:
ISBN:
Category : Marine meteorology
Languages : en
Pages : 132
Book Description
Inventing Atmospheric Science
Author: James Rodger Fleming
Publisher: MIT Press
ISBN: 0262334526
Category : Science
Languages : en
Pages : 307
Book Description
How scientists used transformative new technologies to understand the complexities of weather and the atmosphere, told through the intertwined careers of three key figures. “The goal of meteorology is to portray everything atmospheric, everywhere, always,” declared John Bellamy and Harry Wexler in 1960, soon after the successful launch of TIROS 1, the first weather satellite. Throughout the twentieth century, meteorological researchers have had global ambitions, incorporating technological advances into their scientific study as they worked to link theory with practice. Wireless telegraphy, radio, aviation, nuclear tracers, rockets, digital computers, and Earth-orbiting satellites opened up entirely new research horizons for meteorologists. In this book, James Fleming charts the emergence of the interdisciplinary field of atmospheric science through the lives and careers of three key figures: Vilhelm Bjerknes (1862–1951), Carl-Gustaf Rossby (1898–1957), and Harry Wexler (1911–1962). In the early twentieth century, Bjerknes worked to put meteorology on solid observational and theoretical foundations. His younger colleague, the innovative and influential Rossby, built the first graduate program in meteorology (at MIT), trained aviation cadets during World War II, and was a pioneer in numerical weather prediction and atmospheric chemistry. Wexler, one of Rossby's best students, became head of research at the U.S. Weather Bureau, where he developed new technologies from radar and rockets to computers and satellites, conducted research on the Antarctic ice sheet, and established carbon dioxide measurements at the Mauna Loa Observatory in Hawaii. He was also the first meteorologist to fly into a hurricane—an experience he chose never to repeat. Fleming maps both the ambitions of an evolving field and the constraints that checked them—war, bureaucracy, economic downturns, and, most important, the ultimate realization (prompted by the formulation of chaos theory in the 1960s by Edward Lorenz) that perfectly accurate measurements and forecasts would never be possible.
Publisher: MIT Press
ISBN: 0262334526
Category : Science
Languages : en
Pages : 307
Book Description
How scientists used transformative new technologies to understand the complexities of weather and the atmosphere, told through the intertwined careers of three key figures. “The goal of meteorology is to portray everything atmospheric, everywhere, always,” declared John Bellamy and Harry Wexler in 1960, soon after the successful launch of TIROS 1, the first weather satellite. Throughout the twentieth century, meteorological researchers have had global ambitions, incorporating technological advances into their scientific study as they worked to link theory with practice. Wireless telegraphy, radio, aviation, nuclear tracers, rockets, digital computers, and Earth-orbiting satellites opened up entirely new research horizons for meteorologists. In this book, James Fleming charts the emergence of the interdisciplinary field of atmospheric science through the lives and careers of three key figures: Vilhelm Bjerknes (1862–1951), Carl-Gustaf Rossby (1898–1957), and Harry Wexler (1911–1962). In the early twentieth century, Bjerknes worked to put meteorology on solid observational and theoretical foundations. His younger colleague, the innovative and influential Rossby, built the first graduate program in meteorology (at MIT), trained aviation cadets during World War II, and was a pioneer in numerical weather prediction and atmospheric chemistry. Wexler, one of Rossby's best students, became head of research at the U.S. Weather Bureau, where he developed new technologies from radar and rockets to computers and satellites, conducted research on the Antarctic ice sheet, and established carbon dioxide measurements at the Mauna Loa Observatory in Hawaii. He was also the first meteorologist to fly into a hurricane—an experience he chose never to repeat. Fleming maps both the ambitions of an evolving field and the constraints that checked them—war, bureaucracy, economic downturns, and, most important, the ultimate realization (prompted by the formulation of chaos theory in the 1960s by Edward Lorenz) that perfectly accurate measurements and forecasts would never be possible.
Circular M. Edition
Author: United States. Weather Bureau
Publisher:
ISBN:
Category :
Languages : en
Pages : 266
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 266
Book Description