Advances in Discretization Methods PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advances in Discretization Methods PDF full book. Access full book title Advances in Discretization Methods by Giulio Ventura. Download full books in PDF and EPUB format.

Advances in Discretization Methods

Advances in Discretization Methods PDF Author: Giulio Ventura
Publisher: Springer
ISBN: 3319412469
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
This book gathers selected contributions on emerging research work presented at the International Conference eXtended Discretization MethodS (X-DMS), held in Ferrara in September 2015. It highlights the most relevant advances made at the international level in the context of expanding classical discretization methods, like finite elements, to the numerical analysis of a variety of physical problems. The improvements are intended to achieve higher computational efficiency and to account for special features of the solution directly in the approximation space and/or in the discretization procedure. The methods described include, among others, partition of unity methods (meshfree, XFEM, GFEM), virtual element methods, fictitious domain methods, and special techniques for static and evolving interfaces. The uniting feature of all contributions is the direct link between computational methodologies and their application to different engineering areas.

Advances in Discretization Methods

Advances in Discretization Methods PDF Author: Giulio Ventura
Publisher: Springer
ISBN: 3319412469
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
This book gathers selected contributions on emerging research work presented at the International Conference eXtended Discretization MethodS (X-DMS), held in Ferrara in September 2015. It highlights the most relevant advances made at the international level in the context of expanding classical discretization methods, like finite elements, to the numerical analysis of a variety of physical problems. The improvements are intended to achieve higher computational efficiency and to account for special features of the solution directly in the approximation space and/or in the discretization procedure. The methods described include, among others, partition of unity methods (meshfree, XFEM, GFEM), virtual element methods, fictitious domain methods, and special techniques for static and evolving interfaces. The uniting feature of all contributions is the direct link between computational methodologies and their application to different engineering areas.

Proceedings of 2014 International Conference on Mechanics and Mechanical Engineering

Proceedings of 2014 International Conference on Mechanics and Mechanical Engineering PDF Author: A. Mehran Shahhosseini
Publisher: Trans Tech Publications Ltd
ISBN: 3038267066
Category : Technology & Engineering
Languages : en
Pages : 431

Book Description
2014 International Conference on Mechanics and Mechanical Engineering, (MME 2014), September 13-14, 2014, Wuhan, China

Numerical Mathematics and Advanced Applications ENUMATH 2019

Numerical Mathematics and Advanced Applications ENUMATH 2019 PDF Author: Fred J. Vermolen
Publisher: Springer Nature
ISBN: 3030558746
Category : Mathematics
Languages : en
Pages : 1185

Book Description
This book gathers outstanding papers presented at the European Conference on Numerical Mathematics and Advanced Applications (ENUMATH 2019). The conference was organized by Delft University of Technology and was held in Egmond aan Zee, the Netherlands, from September 30 to October 4, 2019. Leading experts in the field presented the latest results and ideas regarding the design, implementation and analysis of numerical algorithms, as well as their applications to relevant societal problems. ENUMATH is a series of conferences held every two years to provide a forum for discussing basic aspects and new trends in numerical mathematics and scientific and industrial applications, all examined at the highest level of international expertise. The first ENUMATH was held in Paris in 1995, with successive installments at various sites across Europe, including Heidelberg (1997), Jyvaskyla (1999), lschia Porto (2001), Prague (2003), Santiago de Compostela (2005), Graz (2007), Uppsala (2009), Leicester (2011), Lausanne (2013), Ankara (2015) and Bergen (2017).

Superconvergent Discontinuous Galerkin Methods for Elliptic Problems

Superconvergent Discontinuous Galerkin Methods for Elliptic Problems PDF Author: Bo Dong
Publisher:
ISBN:
Category :
Languages : en
Pages : 288

Book Description


An Invitation to the Theory of the Hybridizable Discontinuous Galerkin Method

An Invitation to the Theory of the Hybridizable Discontinuous Galerkin Method PDF Author: Shukai Du
Publisher: Springer Nature
ISBN: 3030272303
Category : Mathematics
Languages : en
Pages : 131

Book Description
This monograph requires basic knowledge of the variational theory of elliptic PDE and the techniques used for the analysis of the Finite Element Method. However, all the tools for the analysis of FEM (scaling arguments, finite dimensional estimates in the reference configuration, Piola transforms) are carefully introduced before being used, so that the reader does not need to go over longforgotten textbooks. Readers include: computational mathematicians, numerical analysts, engineers and scientists interested in new and computationally competitive Discontinuous Galerkin methods. The intended audience includes graduate students in computational mathematics, physics, and engineering, since the prerequisites are quite basic for a second year graduate student who has already taken a non necessarily advanced class in the Finite Element method.

Plasma Physics via Computer Simulation

Plasma Physics via Computer Simulation PDF Author: C.K. Birdsall
Publisher: CRC Press
ISBN: 1482263068
Category : Science
Languages : en
Pages : 504

Book Description
Divided into three main parts, the book guides the reader to an understanding of the basic concepts in this fascinating field of research. Part 1 introduces you to the fundamental concepts of simulation. It examines one-dimensional electrostatic codes and electromagnetic codes, and describes the numerical methods and analysis. Part 2 explores the mathematics and physics behind the algorithms used in Part 1. In Part 3, the authors address some of the more complicated simulations in two and three dimensions. The book introduces projects to encourage practical work Readers can download plasma modeling and simulation software — the ES1 program — with implementations for PCs and Unix systems along with the original FORTRAN source code. Now available in paperback, Plasma Physics via Computer Simulation is an ideal complement to plasma physics courses and for self-study.

Efficient High-Order Discretizations for Computational Fluid Dynamics

Efficient High-Order Discretizations for Computational Fluid Dynamics PDF Author: Martin Kronbichler
Publisher: Springer Nature
ISBN: 3030606104
Category : Technology & Engineering
Languages : en
Pages : 314

Book Description
The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.

Hybrid High-Order Methods

Hybrid High-Order Methods PDF Author: Matteo Cicuttin
Publisher: Springer Nature
ISBN: 3030814777
Category : Mathematics
Languages : en
Pages : 138

Book Description
This book provides a comprehensive coverage of hybrid high-order methods for computational mechanics. The first three chapters offer a gentle introduction to the method and its mathematical foundations for the diffusion problem. The next four chapters address applications of increasing complexity in the field of computational mechanics: linear elasticity, hyperelasticity, wave propagation, contact, friction, and plasticity. The last chapter provides an overview of the main implementation aspects including some examples of Matlab code. The book is primarily intended for graduate students, researchers, and engineers working in related fields of application, and it can also be used as a support for graduate and doctoral lectures.

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods PDF Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
ISBN: 3642597211
Category : Mathematics
Languages : en
Pages : 468

Book Description
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes

hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes PDF Author: Andrea Cangiani
Publisher: Springer
ISBN: 3319676733
Category : Mathematics
Languages : en
Pages : 133

Book Description
Over the last few decades discontinuous Galerkin finite element methods (DGFEMs) have been witnessed tremendous interest as a computational framework for the numerical solution of partial differential equations. Their success is due to their extreme versatility in the design of the underlying meshes and local basis functions, while retaining key features of both (classical) finite element and finite volume methods. Somewhat surprisingly, DGFEMs on general tessellations consisting of polygonal (in 2D) or polyhedral (in 3D) element shapes have received little attention within the literature, despite the potential computational advantages. This volume introduces the basic principles of hp-version (i.e., locally varying mesh-size and polynomial order) DGFEMs over meshes consisting of polygonal or polyhedral element shapes, presents their error analysis, and includes an extensive collection of numerical experiments. The extreme flexibility provided by the locally variable elemen t-shapes, element-sizes, and element-orders is shown to deliver substantial computational gains in several practical scenarios.