Homotopy Theory via Algebraic Geometry and Group Representations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Homotopy Theory via Algebraic Geometry and Group Representations PDF full book. Access full book title Homotopy Theory via Algebraic Geometry and Group Representations by Mark E. Mahowald. Download full books in PDF and EPUB format.

Homotopy Theory via Algebraic Geometry and Group Representations

Homotopy Theory via Algebraic Geometry and Group Representations PDF Author: Mark E. Mahowald
Publisher: American Mathematical Soc.
ISBN: 0821808052
Category : Mathematics
Languages : en
Pages : 394

Book Description
The academic year 1996-97 was designated as a special year in Algebraic Topology at Northwestern University (Evanston, IL). In addition to guest lecturers and special courses, an international conference was held entitled "Current trends in algebraic topology with applications to algebraic geometry and physics". The series of plenary lectures included in this volume indicate the great breadth of the conference and the lively interaction that took place among various areas of mathematics. Original research papers were submitted, and all submissions were refereed to the usual journal standards.

Homotopy Theory via Algebraic Geometry and Group Representations

Homotopy Theory via Algebraic Geometry and Group Representations PDF Author: Mark E. Mahowald
Publisher: American Mathematical Soc.
ISBN: 0821808052
Category : Mathematics
Languages : en
Pages : 394

Book Description
The academic year 1996-97 was designated as a special year in Algebraic Topology at Northwestern University (Evanston, IL). In addition to guest lecturers and special courses, an international conference was held entitled "Current trends in algebraic topology with applications to algebraic geometry and physics". The series of plenary lectures included in this volume indicate the great breadth of the conference and the lively interaction that took place among various areas of mathematics. Original research papers were submitted, and all submissions were refereed to the usual journal standards.

Abstract Homotopy And Simple Homotopy Theory

Abstract Homotopy And Simple Homotopy Theory PDF Author: K Heiner Kamps
Publisher: World Scientific
ISBN: 9814502553
Category : Mathematics
Languages : en
Pages : 476

Book Description
The abstract homotopy theory is based on the observation that analogues of much of the topological homotopy theory and simple homotopy theory exist in many other categories (e.g. spaces over a fixed base, groupoids, chain complexes, module categories). Studying categorical versions of homotopy structure, such as cylinders and path space constructions, enables not only a unified development of many examples of known homotopy theories but also reveals the inner working of the classical spatial theory. This demonstrates the logical interdependence of properties (in particular the existence of certain Kan fillers in associated cubical sets) and results (Puppe sequences, Vogt's Iemma, Dold's theorem on fibre homotopy equivalences, and homotopy coherence theory).

Representation Theory and Complex Geometry

Representation Theory and Complex Geometry PDF Author: Neil Chriss
Publisher: Birkhauser
ISBN: 0817637923
Category : Mathematics
Languages : en
Pages : 495

Book Description
This volume provides an overview of modern advances in representation theory from a geometric standpoint. The techniques developed are quite general and can be applied to other areas such as quantum groups, affine Lie groups, and quantum field theory.

Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory

Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic $K$-Theory PDF Author: Paul Gregory Goerss
Publisher: American Mathematical Soc.
ISBN: 0821832859
Category : Mathematics
Languages : en
Pages : 520

Book Description
As part of its series of Emphasis Years in Mathematics, Northwestern University hosted an International Conference on Algebraic Topology. The purpose of the conference was to develop new connections between homotopy theory and other areas of mathematics. This proceedings volume grew out of that event. Topics discussed include algebraic geometry, cohomology of groups, algebraic $K$-theory, and $\mathbb{A 1$ homotopy theory. Among the contributors to the volume were Alejandro Adem,Ralph L. Cohen, Jean-Louis Loday, and many others. The book is suitable for graduate students and research mathematicians interested in homotopy theory and its relationship to other areas of mathematics.

Motivic Homotopy Theory

Motivic Homotopy Theory PDF Author: Bjorn Ian Dundas
Publisher: Springer Science & Business Media
ISBN: 3540458972
Category : Mathematics
Languages : en
Pages : 228

Book Description
This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Aimed at graduate students in algebraic topology and algebraic geometry, it contains background material from both of these fields, as well as the foundations of motivic homotopy theory. It will serve as a good introduction as well as a convenient reference for a broad group of mathematicians to this important and fascinating new subject. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work, and the other authors have all done important work in the subject.

Algebraic Statistics for Computational Biology

Algebraic Statistics for Computational Biology PDF Author: L. Pachter
Publisher: Cambridge University Press
ISBN: 9780521857000
Category : Mathematics
Languages : en
Pages : 440

Book Description
This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.

D-Modules, Perverse Sheaves, and Representation Theory

D-Modules, Perverse Sheaves, and Representation Theory PDF Author: Ryoshi Hotta
Publisher: Springer Science & Business Media
ISBN: 081764363X
Category : Mathematics
Languages : en
Pages : 408

Book Description
D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.

Categorical Homotopy Theory

Categorical Homotopy Theory PDF Author: Emily Riehl
Publisher: Cambridge University Press
ISBN: 1139952633
Category : Mathematics
Languages : en
Pages : 371

Book Description
This book develops abstract homotopy theory from the categorical perspective with a particular focus on examples. Part I discusses two competing perspectives by which one typically first encounters homotopy (co)limits: either as derived functors definable when the appropriate diagram categories admit a compatible model structure, or through particular formulae that give the right notion in certain examples. Emily Riehl unifies these seemingly rival perspectives and demonstrates that model structures on diagram categories are irrelevant. Homotopy (co)limits are explained to be a special case of weighted (co)limits, a foundational topic in enriched category theory. In Part II, Riehl further examines this topic, separating categorical arguments from homotopical ones. Part III treats the most ubiquitous axiomatic framework for homotopy theory - Quillen's model categories. Here, Riehl simplifies familiar model categorical lemmas and definitions by focusing on weak factorization systems. Part IV introduces quasi-categories and homotopy coherence.

Group Cohomology and Algebraic Cycles

Group Cohomology and Algebraic Cycles PDF Author: Burt Totaro
Publisher: Cambridge University Press
ISBN: 1107015774
Category : Mathematics
Languages : en
Pages : 245

Book Description
This book presents a coherent suite of computational tools for the study of group cohomology algebraic cycles.

Handbook of Homotopy Theory

Handbook of Homotopy Theory PDF Author: Haynes Miller
Publisher: CRC Press
ISBN: 1351251600
Category : Mathematics
Languages : en
Pages : 1142

Book Description
The Handbook of Homotopy Theory provides a panoramic view of an active area in mathematics that is currently seeing dramatic solutions to long-standing open problems, and is proving itself of increasing importance across many other mathematical disciplines. The origins of the subject date back to work of Henri Poincaré and Heinz Hopf in the early 20th century, but it has seen enormous progress in the 21st century. A highlight of this volume is an introduction to and diverse applications of the newly established foundational theory of ¥ -categories. The coverage is vast, ranging from axiomatic to applied, from foundational to computational, and includes surveys of applications both geometric and algebraic. The contributors are among the most active and creative researchers in the field. The 22 chapters by 31 contributors are designed to address novices, as well as established mathematicians, interested in learning the state of the art in this field, whose methods are of increasing importance in many other areas.