Homological Group Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Homological Group Theory PDF full book. Access full book title Homological Group Theory by Charles Terence Clegg Wall. Download full books in PDF and EPUB format.

Homological Group Theory

Homological Group Theory PDF Author: Charles Terence Clegg Wall
Publisher: Cambridge University Press
ISBN: 0521227291
Category : Mathematics
Languages : en
Pages : 409

Book Description
Eminent mathematicians have presented papers on homological and combinatorial techniques in group theory. The lectures are aimed at presenting in a unified way new developments in the area.

Homological Group Theory

Homological Group Theory PDF Author: Charles Terence Clegg Wall
Publisher: Cambridge University Press
ISBN: 0521227291
Category : Mathematics
Languages : en
Pages : 409

Book Description
Eminent mathematicians have presented papers on homological and combinatorial techniques in group theory. The lectures are aimed at presenting in a unified way new developments in the area.

Topological Methods in Group Theory

Topological Methods in Group Theory PDF Author: Ross Geoghegan
Publisher: Springer Science & Business Media
ISBN: 0387746110
Category : Mathematics
Languages : en
Pages : 473

Book Description
This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.

Homology Theory

Homology Theory PDF Author: James W. Vick
Publisher: Springer Science & Business Media
ISBN: 1461208815
Category : Mathematics
Languages : en
Pages : 258

Book Description
This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.

Cohomology of Groups

Cohomology of Groups PDF Author: Kenneth S. Brown
Publisher: Springer Science & Business Media
ISBN: 1468493272
Category : Mathematics
Languages : en
Pages : 318

Book Description
Aimed at second year graduate students, this text introduces them to cohomology theory (involving a rich interplay between algebra and topology) with a minimum of prerequisites. No homological algebra is assumed beyond what is normally learned in a first course in algebraic topology, and the basics of the subject, as well as exercises, are given prior to discussion of more specialized topics.

An Introduction to Homological Algebra

An Introduction to Homological Algebra PDF Author: Northcott
Publisher: Cambridge University Press
ISBN: 9780521058414
Category : Mathematics
Languages : en
Pages : 294

Book Description
Homological algebra, because of its fundamental nature, is relevant to many branches of pure mathematics, including number theory, geometry, group theory and ring theory. Professor Northcott's aim is to introduce homological ideas and methods and to show some of the results which can be achieved. The early chapters provide the results needed to establish the theory of derived functors and to introduce torsion and extension functors. The new concepts are then applied to the theory of global dimensions, in an elucidation of the structure of commutative Noetherian rings of finite global dimension and in an account of the homology and cohomology theories of monoids and groups. A final section is devoted to comments on the various chapters, supplementary notes and suggestions for further reading. This book is designed with the needs and problems of the beginner in mind, providing a helpful and lucid account for those about to begin research, but will also be a useful work of reference for specialists. It can also be used as a textbook for an advanced course.

An Introduction to Homological Algebra

An Introduction to Homological Algebra PDF Author: Charles A. Weibel
Publisher: Cambridge University Press
ISBN: 113964307X
Category : Mathematics
Languages : en
Pages : 470

Book Description
The landscape of homological algebra has evolved over the last half-century into a fundamental tool for the working mathematician. This book provides a unified account of homological algebra as it exists today. The historical connection with topology, regular local rings, and semi-simple Lie algebras are also described. This book is suitable for second or third year graduate students. The first half of the book takes as its subject the canonical topics in homological algebra: derived functors, Tor and Ext, projective dimensions and spectral sequences. Homology of group and Lie algebras illustrate these topics. Intermingled are less canonical topics, such as the derived inverse limit functor lim1, local cohomology, Galois cohomology, and affine Lie algebras. The last part of the book covers less traditional topics that are a vital part of the modern homological toolkit: simplicial methods, Hochschild and cyclic homology, derived categories and total derived functors. By making these tools more accessible, the book helps to break down the technological barrier between experts and casual users of homological algebra.

A Basic Course in Algebraic Topology

A Basic Course in Algebraic Topology PDF Author: William S. Massey
Publisher: Springer
ISBN: 1493990632
Category : Mathematics
Languages : en
Pages : 448

Book Description
This textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date.

Classical Topology and Combinatorial Group Theory

Classical Topology and Combinatorial Group Theory PDF Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 1461243726
Category : Mathematics
Languages : en
Pages : 344

Book Description
In recent years, many students have been introduced to topology in high school mathematics. Having met the Mobius band, the seven bridges of Konigsberg, Euler's polyhedron formula, and knots, the student is led to expect that these picturesque ideas will come to full flower in university topology courses. What a disappointment "undergraduate topology" proves to be! In most institutions it is either a service course for analysts, on abstract spaces, or else an introduction to homological algebra in which the only geometric activity is the completion of commutative diagrams. Pictures are kept to a minimum, and at the end the student still does nr~ understand the simplest topological facts, such as the rcason why knots exist. In my opinion, a well-balanced introduction to topology should stress its intuitive geometric aspect, while admitting the legitimate interest that analysts and algebraists have in the subject. At any rate, this is the aim of the present book. In support of this view, I have followed the historical development where practicable, since it clearly shows the influence of geometric thought at all stages. This is not to claim that topology received its main impetus from geometric recreations like the seven bridges; rather, it resulted from the l'isualization of problems from other parts of mathematics-complex analysis (Riemann), mechanics (Poincare), and group theory (Dehn). It is these connec tions to other parts of mathematics which make topology an important as well as a beautiful subject.

Homology Theory

Homology Theory PDF Author: P. J. Hilton
Publisher: CUP Archive
ISBN: 9780521094221
Category : Mathematics
Languages : en
Pages : 504

Book Description
This account of algebraic topology is complete in itself, assuming no previous knowledge of the subject. It is used as a textbook for students in the final year of an undergraduate course or on graduate courses and as a handbook for mathematicians in other branches who want some knowledge of the subject.

Homology in Group Theory

Homology in Group Theory PDF Author: Urs Stammbach
Publisher: Springer
ISBN: 3540378707
Category : Mathematics
Languages : en
Pages : 187

Book Description