Higher-Order Logic and Type Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Higher-Order Logic and Type Theory PDF full book. Access full book title Higher-Order Logic and Type Theory by John L. Bell. Download full books in PDF and EPUB format.

Higher-Order Logic and Type Theory

Higher-Order Logic and Type Theory PDF Author: John L. Bell
Publisher: Cambridge University Press
ISBN: 1108991955
Category : Philosophy
Languages : en
Pages : 88

Book Description
This Element is an exposition of second- and higher-order logic and type theory. It begins with a presentation of the syntax and semantics of classical second-order logic, pointing up the contrasts with first-order logic. This leads to a discussion of higher-order logic based on the concept of a type. The second Section contains an account of the origins and nature of type theory, and its relationship to set theory. Section 3 introduces Local Set Theory (also known as higher-order intuitionistic logic), an important form of type theory based on intuitionistic logic. In Section 4 number of contemporary forms of type theory are described, all of which are based on the so-called 'doctrine of propositions as types'. We conclude with an Appendix in which the semantics for Local Set Theory - based on category theory - is outlined.

Higher-Order Logic and Type Theory

Higher-Order Logic and Type Theory PDF Author: John L. Bell
Publisher: Cambridge University Press
ISBN: 1108991955
Category : Philosophy
Languages : en
Pages : 88

Book Description
This Element is an exposition of second- and higher-order logic and type theory. It begins with a presentation of the syntax and semantics of classical second-order logic, pointing up the contrasts with first-order logic. This leads to a discussion of higher-order logic based on the concept of a type. The second Section contains an account of the origins and nature of type theory, and its relationship to set theory. Section 3 introduces Local Set Theory (also known as higher-order intuitionistic logic), an important form of type theory based on intuitionistic logic. In Section 4 number of contemporary forms of type theory are described, all of which are based on the so-called 'doctrine of propositions as types'. We conclude with an Appendix in which the semantics for Local Set Theory - based on category theory - is outlined.

Introduction to Higher-Order Categorical Logic

Introduction to Higher-Order Categorical Logic PDF Author: J. Lambek
Publisher: Cambridge University Press
ISBN: 9780521356534
Category : Mathematics
Languages : en
Pages : 308

Book Description
Part I indicates that typed-calculi are a formulation of higher-order logic, and cartesian closed categories are essentially the same. Part II demonstrates that another formulation of higher-order logic is closely related to topos theory.

Categorical Logic and Type Theory

Categorical Logic and Type Theory PDF Author: B. Jacobs
Publisher: Gulf Professional Publishing
ISBN: 9780444508539
Category : Computers
Languages : en
Pages : 784

Book Description
This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

An Introduction to Mathematical Logic and Type Theory

An Introduction to Mathematical Logic and Type Theory PDF Author: Peter B. Andrews
Publisher: Springer Science & Business Media
ISBN: 9781402007637
Category : Computers
Languages : en
Pages : 416

Book Description
In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.

Programming with Higher-Order Logic

Programming with Higher-Order Logic PDF Author: Dale Miller
Publisher: Cambridge University Press
ISBN: 1139510428
Category : Computers
Languages : en
Pages : 321

Book Description
Formal systems that describe computations over syntactic structures occur frequently in computer science. Logic programming provides a natural framework for encoding and animating such systems. However, these systems often embody variable binding, a notion that must be treated carefully at a computational level. This book aims to show that a programming language based on a simply typed version of higher-order logic provides an elegant, declarative means for providing such a treatment. Three broad topics are covered in pursuit of this goal. First, a proof-theoretic framework that supports a general view of logic programming is identified. Second, an actual language called λProlog is developed by applying this view to higher-order logic. Finally, a methodology for programming with specifications is exposed by showing how several computations over formal objects such as logical formulas, functional programs, and λ-terms and π-calculus expressions can be encoded in λProlog.

Homotopy Type Theory: Univalent Foundations of Mathematics

Homotopy Type Theory: Univalent Foundations of Mathematics PDF Author:
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484

Book Description


Foundations without Foundationalism

Foundations without Foundationalism PDF Author: Stewart Shapiro
Publisher: Clarendon Press
ISBN: 0191524018
Category : Mathematics
Languages : en
Pages : 302

Book Description
The central contention of this book is that second-order logic has a central role to play in laying the foundations of mathematics. In order to develop the argument fully, the author presents a detailed development of higher-order logic, including a comprehensive discussion of its semantics. Professor Shapiro demonstrates the prevalence of second-order notions in mathematics is practised, and also the extent to which mathematical concepts can be formulated in second-order languages . He shows how first-order languages are insufficient to codify many concepts in contemporary mathematics, and thus that higher-order logic is needed to fully reflect current mathematics. Throughout, the emphasis is on discussing the philosophical and historical issues associated with this subject, and the implications that they have for foundational studies. For the most part, the author assumes little more than a familiarity with logic as might be gained from a beginning graduate course which includes the incompleteness of arithmetic and the Lowenheim-Skolem theorems. All those concerned with the foundations of mathematics will find this a thought-provoking discussion of some of the central issues in this subject.

Type Theory and Formal Proof

Type Theory and Formal Proof PDF Author: Rob Nederpelt
Publisher: Cambridge University Press
ISBN: 1316061086
Category : Computers
Languages : en
Pages : 465

Book Description
Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.

Extensions of First-Order Logic

Extensions of First-Order Logic PDF Author: Maria Manzano
Publisher: Cambridge University Press
ISBN: 9780521354356
Category : Computers
Languages : en
Pages : 414

Book Description
An introduction to many-sorted logic as an extension of first-order logic.

Principia Mathematica

Principia Mathematica PDF Author: Alfred North Whitehead
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 688

Book Description