All-Digital Frequency Synthesizer in Deep-Submicron CMOS

All-Digital Frequency Synthesizer in Deep-Submicron CMOS PDF Author: Robert Bogdan Staszewski
Publisher: John Wiley & Sons
ISBN: 0470041943
Category : Technology & Engineering
Languages : en
Pages : 281

Book Description
A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.

CMOS Telecom Data Converters

CMOS Telecom Data Converters PDF Author: Angel Rodriguez-Vazquez
Publisher:
ISBN: 9781475737257
Category :
Languages : en
Pages : 628

Book Description


High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing

High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing PDF Author: Pieter Harpe
Publisher: Springer
ISBN: 3319079387
Category : Technology & Engineering
Languages : en
Pages : 419

Book Description
This book is based on the 18 tutorials presented during the 23rd workshop on Advances in Analog Circuit Design. Expert designers present readers with information about a variety of topics at the frontier of analog circuit design, serving as a valuable reference to the state-of-the-art, for anyone involved in analog circuit research and development.

Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters

Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters PDF Author: Sai-Weng Sin
Publisher: Springer Science & Business Media
ISBN: 9048197104
Category : Technology & Engineering
Languages : en
Pages : 147

Book Description
Analog-to-Digital Converters (ADCs) play an important role in most modern signal processing and wireless communication systems where extensive signal manipulation is necessary to be performed by complicated digital signal processing (DSP) circuitry. This trend also creates the possibility of fabricating all functional blocks of a system in a single chip (System On Chip - SoC), with great reductions in cost, chip area and power consumption. However, this tendency places an increasing challenge, in terms of speed, resolution, power consumption, and noise performance, in the design of the front-end ADC which is usually the bottleneck of the whole system, especially under the unavoidable low supply-voltage imposed by technology scaling, as well as the requirement of battery operated portable devices. Generalized Low-Voltage Circuit Techniques for Very High-Speed Time-Interleaved Analog-to-Digital Converters will present new techniques tailored for low-voltage and high-speed Switched-Capacitor (SC) ADC with various design-specific considerations.

Power-Efficient High-Speed Parallel-Sampling ADCs for Broadband Multi-carrier Systems

Power-Efficient High-Speed Parallel-Sampling ADCs for Broadband Multi-carrier Systems PDF Author: Yu Lin
Publisher: Springer
ISBN: 3319176803
Category : Technology & Engineering
Languages : en
Pages : 124

Book Description
This book addresses the challenges of designing high performance analog-to-digital converters (ADCs) based on the “smart data converters” concept, which implies context awareness, on-chip intelligence and adaptation. Readers will learn to exploit various information either a-priori or a-posteriori (obtained from devices, signals, applications or the ambient situations, etc.) for circuit and architecture optimization during the design phase or adaptation during operation, to enhance data converters performance, flexibility, robustness and power-efficiency. The authors focus on exploiting the a-priori knowledge of the system/application to develop enhancement techniques for ADCs, with particular emphasis on improving the power efficiency of high-speed and high-resolution ADCs for broadband multi-carrier systems.

Low-Power High-Resolution Analog to Digital Converters

Low-Power High-Resolution Analog to Digital Converters PDF Author: Amir Zjajo
Publisher: Springer Science & Business Media
ISBN: 9048197252
Category : Technology & Engineering
Languages : en
Pages : 311

Book Description
With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. This has recently generated a great demand for low-power, low-voltage A/D converters that can be realized in a mainstream deep-submicron CMOS technology. However, the discrepancies between lithography wavelengths and circuit feature sizes are increasing. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. The inherent randomness of materials used in fabrication at nanoscopic scales means that performance will be increasingly variable, not only from die-to-die but also within each individual die. Parametric variability will be compounded by degradation in nanoscale integrated circuits resulting in instability of parameters over time, eventually leading to the development of faults. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. In an attempt to address these issues, Low-Power High-Resolution Analog-to-Digital Converters specifically focus on: i) improving the power efficiency for the high-speed, and low spurious spectral A/D conversion performance by exploring the potential of low-voltage analog design and calibration techniques, respectively, and ii) development of circuit techniques and algorithms to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover errors continuously. The feasibility of the described methods has been verified by measurements from the silicon prototypes fabricated in standard 180nm, 90nm and 65nm CMOS technology.

Low-Power High-Speed ADCs for Nanometer CMOS Integration

Low-Power High-Speed ADCs for Nanometer CMOS Integration PDF Author: Zhiheng Cao
Publisher: Springer Science & Business Media
ISBN: 1402084501
Category : Technology & Engineering
Languages : en
Pages : 95

Book Description
Low-Power High-Speed ADCs for Nanometer CMOS Integration is about the design and implementation of ADC in nanometer CMOS processes that achieve lower power consumption for a given speed and resolution than previous designs, through architectural and circuit innovations that take advantage of unique features of nanometer CMOS processes. A phase lock loop (PLL) clock multiplier has also been designed using new circuit techniques and successfully tested. 1) A 1.2V, 52mW, 210MS/s 10-bit two-step ADC in 130nm CMOS occupying 0.38mm2. Using offset canceling comparators and capacitor networks implemented with small value interconnect capacitors to replace resistor ladder/multiplexer in conventional sub-ranging ADCs, it achieves 74dB SFDR for 10MHz and 71dB SFDR for 100MHz input. 2) A 32mW, 1.25GS/s 6-bit ADC with 2.5GHz internal clock in 130nm CMOS. A new type of architecture that combines flash and SAR enables the lowest power consumption, 6-bit >1GS/s ADC reported to date. This design can be a drop-in replacement for existing flash ADCs since it does require any post-processing or calibration step and has the same latency as flash. 3) A 0.4ps-rms-jitter (integrated from 3kHz to 300MHz offset for >2.5GHz) 1-3GHz tunable, phase-noise programmable clock-multiplier PLL for generating sampling clock to the SAR ADC. A new loop filter structure enables phase error preamplification to lower PLL in-band noise without increasing loop filter capacitor size.

Multi-Mode / Multi-Band RF Transceivers for Wireless Communications

Multi-Mode / Multi-Band RF Transceivers for Wireless Communications PDF Author: Gernot Hueber
Publisher: John Wiley & Sons
ISBN: 1118102207
Category : Technology & Engineering
Languages : en
Pages : 608

Book Description
Summarizes cutting-edge physical layer technologies for multi-mode wireless RF transceivers. Includes original contributions from distinguished researchers and professionals. Covers cutting-edge physical layer technologies for multi-mode wireless RF transceivers. Contributors are all leading researchers and professionals in this field.

CMOS Telecom Data Converters

CMOS Telecom Data Converters PDF Author: Angel Rodríguez-Vázquez
Publisher: Springer Science & Business Media
ISBN: 1475737246
Category : Technology & Engineering
Languages : en
Pages : 610

Book Description
CMOS Telecom Data Converters compiles the latest achievements regarding the design of high-speed and high-resolution data converters in deep submicron CMOS technologies. The four types of analog-to-digital converter architectures commonly found in this arena are covered, namely sigma-delta, pipeline, folding/interpolating and flash. For all these types, latest achievements regarding the solution of critical architectural and circuital issues are presented, and illustrated through IC prototypes with measured state-of-the-art performances. Some of these prototypes are conceived to be employed at the chipset of newest generation wireline modems (ADSL and ADSL+). Others are intended for wireless transceivers. Besides analog-to-digital converters, the book also covers other functions needed for communication systems, such as digital-to-analog converters, analog filters, programmable gain amplifiers, digital filters, and line drivers.

Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion

Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion PDF Author: James A. Cherry
Publisher: Springer Science & Business Media
ISBN: 0792386256
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
Among analog-to-digital converters, the delta-sigma modulator has cornered the market on high to very high resolution converters at moderate speeds, with typical applications such as digital audio and instrumentation. Interest has recently increased in delta-sigma circuits built with a continuous-time loop filter rather than the more common switched-capacitor approach. Continuous-time delta-sigma modulators offer less noisy virtual ground nodes at the input, inherent protection against signal aliasing, and the potential to use a physical rather than an electrical integrator in the first stage for novel applications like accelerometers and magnetic flux sensors. More significantly, they relax settling time restrictions so that modulator clock rates can be raised. This opens the possibility of wideband (1 MHz or more) converters, possibly for use in radio applications at an intermediate frequency so that one or more stages of mixing might be done in the digital domain. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits covers all aspects of continuous-time delta-sigma modulator design, with particular emphasis on design for high clock speeds. The authors explain the ideal design of such modulators in terms of the well-understood discrete-time modulator design problem and provide design examples in Matlab. They also cover commonly-encountered non-idealities in continuous-time modulators and how they degrade performance, plus a wealth of material on the main problems (feedback path delays, clock jitter, and quantizer metastability) in very high-speed designs and how to avoid them. They also give a concrete design procedure for a real high-speed circuit which illustrates the tradeoffs in the selection of key parameters. Detailed circuit diagrams, simulation results and test results for an integrated continuous-time 4 GHz band-pass modulator for A/D conversion of 1 GHz analog signals are also presented. Continuous-Time Delta-Sigma Modulators for High-Speed A/D Conversion: Theory, Practice and Fundamental Performance Limits concludes with some promising modulator architectures and a list of the challenges that remain in this exciting field.