High Performance Fuel Desing for Next Generation Pressurized Water Reactors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High Performance Fuel Desing for Next Generation Pressurized Water Reactors PDF full book. Access full book title High Performance Fuel Desing for Next Generation Pressurized Water Reactors by Mujid S. Kazimi. Download full books in PDF and EPUB format.

High Performance Fuel Desing for Next Generation Pressurized Water Reactors

High Performance Fuel Desing for Next Generation Pressurized Water Reactors PDF Author: Mujid S. Kazimi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

High Performance Fuel Desing for Next Generation Pressurized Water Reactors

High Performance Fuel Desing for Next Generation Pressurized Water Reactors PDF Author: Mujid S. Kazimi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Boiling Water Reactors

Boiling Water Reactors PDF Author: Koji Nishida
Publisher: Elsevier
ISBN: 012821368X
Category : Business & Economics
Languages : en
Pages : 618

Book Description
Boiling Water Reactors, Volume Four in the JSME Series on Thermal and Nuclear Power Generation compiles the latest research in this very comprehensive reference that begins with an analysis of the history of BWR development and then moves through BWR plant design and innovations. The reader is guided through considerations for all BWR plant features and systems, including reactor internals, safety systems and plant instrumentation and control. Thermal-hydraulic aspects within a BWR core are analyzed alongside fuel analysis before comparisons of the latest BWR plant life management and maintenance technologies to promote safety and radiation protection practices are covered. The book's authors combine their in-depth knowledge and depth of experience in the field to analyze innovations and Next Generation BWRs, considering prospects for a variety of different BWRs, such as High-Conversion-BWRs, TRU-Burner Reactors and Economic Simplified BWRs. Written by experts from the leaders and pioneers in nuclear research at the Japanese Society of Mechanical Engineers Includes real examples and case studies from Japan, the US and Europe to provide a deeper learning opportunity with practical benefits Considers societal impacts and sustainability concerns and goals throughout the discussion Explores BWR plant design, thermal-hydraulic aspects, the reactor core and plant life management and maintenance in one complete resource

High Performance Light Water Reactor - Next Generation Nuclear Power

High Performance Light Water Reactor - Next Generation Nuclear Power PDF Author: Kai Fischer
Publisher: Sudwestdeutscher Verlag Fur Hochschulschriften AG
ISBN: 9783838111308
Category :
Languages : en
Pages : 160

Book Description
The High Performance Light Water Reactor (HPLWR) is a light water reactor with supercritical steam conditions which has been investigated within the 5th Framework Program of the European Commission. Due to the supercritical pressure of 25 MPa, water, used as moderator and as coolant, flows as a single phase through the core and can be directly fed to the turbine. Using the technology of coal fired power plants with supercritical steam conditions, the heat-up in the core is done in several steps to achieve the targeted high steam outlet temperature of 500 C without exceeding available cladding material limits. Based on a first design of a fuel assembly cluster for a HPLWR with a single pass core, the surrounding internals and the reactor pressure vessel are dimensioned for the first time, following the safety standards of the nuclear safety standards commission in Germany. Furthermore, this design is extended to the incorporation of core arrangements with two and three passes. The design of the internals and the RPV are verified using combined mechanical and thermal stress analyses and thermal-hydraulic analyses."

Nuclear Fuel Elements

Nuclear Fuel Elements PDF Author: Brian R. T. Frost
Publisher: Elsevier
ISBN: 1483155250
Category : Technology & Engineering
Languages : en
Pages : 284

Book Description
Nuclear Fuel Elements: Design, Fabrication and Performance is concerned with the design, fabrication, and performance of nuclear fuel elements, with emphasis on fast reactor fuel elements. Topics range from fuel types and the irradiation behavior of fuels to cladding and duct materials, fuel element design and modeling, fuel element performance testing and qualification, and the performance of water reactor fuels. Fast reactor fuel elements, research and test reactor fuel elements, and unconventional fuel elements are also covered. This volume consists of 12 chapters and begins with an overview of nuclear reactors and fuel elements, as well as fuel element design and development based on the reactor operator's approach, materials scientist's approach, and interdisciplinary approach. The reader is then introduced to different types of nuclear fuels and their irradiation behavior, considerations for using cladding and duct materials in fuel element design and development, and fuel element design and modeling. The chapters that follow focus on the testing of fuel element performance, experimental techniques and equipment for testing fuel element designs, and the performance of fuels for water reactors. Fuel elements for gas-cooled reactors, fast reactors, and research and test reactors are also described. The book concludes with an assessment of unconventional fuel elements. This book will be useful to fuel element technologists as well as materials scientists and engineers.

Assessment of Innovative Fuel Designs for High Performance Light Water Reactors

Assessment of Innovative Fuel Designs for High Performance Light Water Reactors PDF Author: David Michael Carpenter
Publisher:
ISBN:
Category :
Languages : en
Pages : 189

Book Description
(cont.) Because of the fuel geometry, the average fuel temperature is significantly lower, and the stiffness of the SiC cladding helps to maintain the geometry of the annulus during extended irradiation. Experimental projects have been undertaken to study the performance of both the annular fuel rods and silicon carbide duplex cladding. A post-irradiation examination of prototype annular fuel rods with VIPAC fuel, irradiated in the MIT reactor, has been designed and executed. Through this non-destructive examination, the disposition of the fuel grains is examined, and fuel burnup and fission gas release is estimated. These experimental results correlate well with computer calculations. A new irradiation facility was also planned and constructed that consists of a closed loop, operated at pressurized water reactor pressure, temperature, and chemistry conditions. This facility contains silicon carbide duplex cladding samples of various constructions, and it will be irradiated in the core of the MIT reactor for several months.

Review of Fuel Element Developments for Water Cooled Nuclear Power Reactors

Review of Fuel Element Developments for Water Cooled Nuclear Power Reactors PDF Author: International Atomic Energy Agency
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 152

Book Description
Improvements in water reactor fuel technology and utilization are of great importance in achieving better reactor operational safety and economics. This report is intended to provide general information on the progress made in water reactor fuel design, fabrication and utilization, as well as on current and future developments.

Structural Alloys for Nuclear Energy Applications

Structural Alloys for Nuclear Energy Applications PDF Author: Robert Odette
Publisher: Newnes
ISBN: 012397349X
Category : Technology & Engineering
Languages : en
Pages : 673

Book Description
High-performance alloys that can withstand operation in hazardous nuclear environments are critical to presentday in-service reactor support and maintenance and are foundational for reactor concepts of the future. With commercial nuclear energy vendors and operators facing the retirement of staff during the coming decades, much of the scholarly knowledge of nuclear materials pursuant to appropriate, impactful, and safe usage is at risk. Led by the multi-award winning editorial team of G. Robert Odette (UCSB) and Steven J. Zinkle (UTK/ORNL) and with contributions from leaders of each alloy discipline, Structural Alloys for Nuclear Energy Applications aids the next generation of researchers and industry staff developing and maintaining steels, nickel-base alloys, zirconium alloys, and other structural alloys in nuclear energy applications. This authoritative reference is a critical acquisition for institutions and individuals seeking state-of-the-art knowledge aided by the editors’ unique personal insight from decades of frontline research, engineering and management. Focuses on in-service irradiation, thermal, mechanical, and chemical performance capabilities. Covers the use of steels and other structural alloys in current fission technology, leading edge Generation-IV fission reactors, and future fusion power reactors. Provides a critical and comprehensive review of the state-of-the-art experimental knowledge base of reactor materials, for applications ranging from engineering safety and lifetime assessments to supporting the development of advanced computational models.

Innovative Fuel Designs for High Power Density Pressurized Water Reactor

Innovative Fuel Designs for High Power Density Pressurized Water Reactor PDF Author: Dandong Feng (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 259

Book Description
(contd.) It is found that the main uncertainty for this design is associated with the heat split between the inner and outer channels due to differences in the thermal resistances in the two fuel-clad gaps. Annular fuel is found to be resistant to flow instabilities, such as Ledinegg instability and density wave oscillation due to high system pressure and one-phase flow along most of the hot channel length. Similar power density uprate is found possible for annular fuel in a hexagonal lattice. Large break loss of coolant accident (LBLOCA) for the reference Westinghouse 4-loop PWR utilizing annular fuel at 150% power is analyzed using RELAP, under conservative conditions. The blowdown peak cladding temperature (PCT) is found to be lower because of the low operating fuel temperature, but the flow rate from the safety injection system needs to be increased by 50% to remove the 50% higher decay heat. Loss of flow analysis also showed better performance of the annular fuel because of its low stored energy. The fuel design that best meets the desired thermal and mechanical features is the spiral cross-geometry rods. The dimensions of this type of fuel that can be applied in the reference core were defined. Thermal-hydraulic whole-core evaluations were conducted with cylindrical fuel rod simplification, and critical heat flux modification based on the heat flux lateral non-uniformity in the cross geometry. This geometry was found to have the potential to increase PWR power density by 50%. However, there are major uncertainties in the feasibility and costs of manufacturing this fuel.

NUREG/CR.

NUREG/CR. PDF Author: U.S. Nuclear Regulatory Commission
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 48

Book Description


Design Strategies for Optimizing High Burnup Fuel in Pressurized Water Reactors

Design Strategies for Optimizing High Burnup Fuel in Pressurized Water Reactors PDF Author: Zhiwen Xu
Publisher:
ISBN:
Category :
Languages : en
Pages : 305

Book Description
This work is focused on the strategy for utilizing high-burnup fuel in pressurized water reactors (PWR) with special emphasis on the full array of neutronic considerations. The historical increase in batch-averaged discharge fuel burnup, from ~30 MWd/kg in the 1970s to ~50 MWd/kg today, was achieved mainly by increasing the reload fuel enrichment to allow longer fuel cycles: from an average of 12 months to about 18 months. This also reduced operating costs by improving the plant capacity factor. Recently, because of limited spent fuel storage capacity, increased core power output and the search for increased proliferation resistance, achieving burnup in the 70 to 100 MWd/kg range has attracted considerable attention. However the implications of this initiative have not been fully explored; hence this work defines the practical issues for high-burnup PWR fuels based on neutronic, thermal hydraulic and economic considerations as well as spent fuel characteristics. In order to evaluate the various high burnup fuel design options, an improved MCNP-ORIGEN depletion program called MCODE was developed. A standard burnup predictor-corrector algorithm is implemented, which distinguishes MCODE from other MCNP-ORIGEN linkage codes. Using MCODE, the effect of lattice design (moderation effect) on core design and spent fuel characteristics is explored. Characterized by the hydrogen-to-heavy-metal ratio (H/HM), the neutron spectrum effect in UO2/H2O lattices is investigated for a wide range of moderation, from fast spectra to over-thermalized spectra. It is shown that either wetter or very dry lattices are preferable in terms of achievable burnup potential to those having an epithermal spectrum. Wet lattices are the preferred high burnup approach due to improved proliferation resistance. The constraint of negative moderator temperature coefficient (MTC) requires that H/HM values (now at 3.4) remain below ~6.0 for PWR lattices. Alternative fuel choices, including the conventional solid pellets, central-voided annular pellets, Internally- & eXternally-cooled Annular Fuel (IXAF), and different fuel forms are analyzed to achieve a wetter lattice. Although a wetter lattice has higher burnup potential than the reference PWR lattice, the requirement of a fixed target cycle energy production necessitates higher initial fuel enrichments to compensate for the loss of fuel mass in a wetter lattice. Practical issues and constraints for the high burnup fuel include neutronic reactivity control, heat transfer margin, and fission gas release. Overall the IXAF design appears to be the most promising approach to realization of high burnup fuel. High-burnup spent fuel characteristics are compared to the reference spent fuel of 33 MWd/kg, representative of most of the spent fuel inventory. Although an increase of decay power and radioactivity per unit mass of initial heavy metal is immediately observed, the heat load (integration of decay power over time) per unit electricity generation decreases as the fuel discharge burnup increases. The magnitude of changes depends on the time after discharge. For the same electricity production, not only the mass and volume of the spent fuel are reduced, but also, to a lesser extent, the total heat load of the spent fuel. Since the heat load in the first several hundred years roughly determines the capital cost of the repository, a high burnup strategy coupled with adequate cooling time, may provide a cost-reduction approach to the repository. High burnup is beneficial to enhancing the proliferation resistance. The plutonium vector in the high-burnup spent fuel is degraded, hence less attractive for weapons. For example, the ratio of Pu-238 to Pu-239 increases with burnup to the 2.5 power. However, the economic benefits are uncertain. Under the current economic conditions, the PWR fuel burnup appears to have a shallow optimum discharge burnup between 50 and 80 MWd/kg. The actual minimum is influenced by the financing costs as well as the cost of refueling shutdowns. Since the fuel cycle back-end benefits will accrue to the federal government, the current economic framework, such as the waste fee based on the electricity produced rather than volume or actinide content, does not create an incentive for utilities to increase burnup. Different schemes exist for fuel management of high burnup PWR cores. For the conventional core design, a generalized enrichment-burnup correlation (applicable between 3 w/o and 20 w/o) was produced based on CASMO/SIMULATE PWR core calculations. Among retrofit cores, increasing the number of fuel batches is preferred over increasing the cycle length due to nuclear fuel cycle economic imperatives. For future core designs, a higher power-density core is a very attractive option to cut down the busbar cost. The IXAF concept possesses key design characteristics that provide the necessary thermal margins at high core power densities. In this regard, the IXAF fuel deserves further investigation to fully exploit its high burnup capability.