High-Performance Computing of Big Data for Turbulence and Combustion PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download High-Performance Computing of Big Data for Turbulence and Combustion PDF full book. Access full book title High-Performance Computing of Big Data for Turbulence and Combustion by Sergio Pirozzoli. Download full books in PDF and EPUB format.

High-Performance Computing of Big Data for Turbulence and Combustion

High-Performance Computing of Big Data for Turbulence and Combustion PDF Author: Sergio Pirozzoli
Publisher: Springer
ISBN: 3030170128
Category : Technology & Engineering
Languages : en
Pages : 250

Book Description
This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource.

High-Performance Computing of Big Data for Turbulence and Combustion

High-Performance Computing of Big Data for Turbulence and Combustion PDF Author: Sergio Pirozzoli
Publisher: Springer
ISBN: 3030170128
Category : Technology & Engineering
Languages : en
Pages : 250

Book Description
This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource.

Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Data Analysis for Direct Numerical Simulations of Turbulent Combustion PDF Author: Heinz Pitsch
Publisher: Springer Nature
ISBN: 3030447189
Category : Mathematics
Languages : en
Pages : 294

Book Description
This book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.

Computational Combustion Using High-performance Computing

Computational Combustion Using High-performance Computing PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 335

Book Description


New Frontiers in High Performance Computing and Big Data

New Frontiers in High Performance Computing and Big Data PDF Author: G. Fox
Publisher: IOS Press
ISBN: 1614998167
Category : Computers
Languages : en
Pages : 272

Book Description
For the last four decades, parallel computing platforms have increasingly formed the basis for the development of high performance systems primarily aimed at the solution of intensive computing problems, and the application of parallel computing systems has also become a major factor in furthering scientific research. But such systems also offer the possibility of solving the problems encountered in the processing of large-scale scientific data sets, as well as in the analysis of Big Data in the fields of medicine, social media, marketing, economics etc. This book presents papers from the International Research Workshop on Advanced High Performance Computing Systems, held in Cetraro, Italy, in July 2016. The workshop covered a wide range of topics and new developments related to the solution of intensive and large-scale computing problems, and the contributions included in this volume cover aspects of the evolution of parallel platforms and highlight some of the problems encountered with the development of ever more powerful computing systems. The importance of future large-scale data science applications is also discussed. The book will be of particular interest to all those involved in the development or application of parallel computing systems.

Advances in Mathematical Modeling and Scientific Computing

Advances in Mathematical Modeling and Scientific Computing PDF Author: Firuz Kamalov
Publisher: Springer Nature
ISBN: 3031414209
Category : Computer science
Languages : en
Pages : 933

Book Description
This volume collects the proceedings of the International Conference on Recent Developments in Mathematics (ICRDM), held at Canadian University Dubai, UAE, in August 2022. This is the second of two volumes, with this volume focusing on more applied topics, particularly mathematical modeling and scientific computing, and the first covering recent advances in algebra and analysis. Each chapter identifies existing research problems, the techniques needed to solve them, and a thorough analysis of the obtained results. Advances in Mathematical Modeling and Scientific Computing will appeal to a range of postgraduate students, researchers, and industry professionals interested in exploring recent advancements in applied mathematics.

Data Analysis for Direct Numerical Simulations of Turbulent Combustion

Data Analysis for Direct Numerical Simulations of Turbulent Combustion PDF Author:
Publisher:
ISBN: 9783030447199
Category : Big data
Languages : en
Pages :

Book Description
This book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences.

High Performance Computing for Big Data

High Performance Computing for Big Data PDF Author: Chao Wang
Publisher: CRC Press
ISBN: 1351651579
Category : Computers
Languages : en
Pages : 360

Book Description
High-Performance Computing for Big Data: Methodologies and Applications explores emerging high-performance architectures for data-intensive applications, novel efficient analytical strategies to boost data processing, and cutting-edge applications in diverse fields, such as machine learning, life science, neural networks, and neuromorphic engineering. The book is organized into two main sections. The first section covers Big Data architectures, including cloud computing systems, and heterogeneous accelerators. It also covers emerging 3D IC design principles for memory architectures and devices. The second section of the book illustrates emerging and practical applications of Big Data across several domains, including bioinformatics, deep learning, and neuromorphic engineering. Features Covers a wide range of Big Data architectures, including distributed systems like Hadoop/Spark Includes accelerator-based approaches for big data applications such as GPU-based acceleration techniques, and hardware acceleration such as FPGA/CGRA/ASICs Presents emerging memory architectures and devices such as NVM, STT- RAM, 3D IC design principles Describes advanced algorithms for different big data application domains Illustrates novel analytics techniques for Big Data applications, scheduling, mapping, and partitioning methodologies Featuring contributions from leading experts, this book presents state-of-the-art research on the methodologies and applications of high-performance computing for big data applications. About the Editor Dr. Chao Wang is an Associate Professor in the School of Computer Science at the University of Science and Technology of China. He is the Associate Editor of ACM Transactions on Design Automations for Electronics Systems (TODAES), Applied Soft Computing, Microprocessors and Microsystems, IET Computers & Digital Techniques, and International Journal of Electronics. Dr. Chao Wang was the recipient of Youth Innovation Promotion Association, CAS, ACM China Rising Star Honorable Mention (2016), and best IP nomination of DATE 2015. He is now on the CCF Technical Committee on Computer Architecture, CCF Task Force on Formal Methods. He is a Senior Member of IEEE, Senior Member of CCF, and a Senior Member of ACM.

Big Data and High Performance Computing

Big Data and High Performance Computing PDF Author: L. Grandinetti
Publisher: IOS Press
ISBN: 1614995834
Category : Computers
Languages : en
Pages : 168

Book Description
Big Data has been much in the news in recent years, and the advantages conferred by the collection and analysis of large datasets in fields such as marketing, medicine and finance have led to claims that almost any real world problem could be solved if sufficient data were available. This is of course a very simplistic view, and the usefulness of collecting, processing and storing large datasets must always be seen in terms of the communication, processing and storage capabilities of the computing platforms available. This book presents papers from the International Research Workshop, Advanced High Performance Computing Systems, held in Cetraro, Italy, in July 2014. The papers selected for publication here discuss fundamental aspects of the definition of Big Data, as well as considerations from practice where complex datasets are collected, processed and stored. The concepts, problems, methodologies and solutions presented are of much more general applicability than may be suggested by the particular application areas considered. As a result the book will be of interest to all those whose work involves the processing of very large data sets, exascale computing and the emerging fields of data science

Whither Turbulence and Big Data in the 21st Century?

Whither Turbulence and Big Data in the 21st Century? PDF Author: Andrew Pollard
Publisher: Springer
ISBN: 3319412175
Category : Technology & Engineering
Languages : en
Pages : 570

Book Description
This volume provides a snapshot of the current and future trends in turbulence research across a range of disciplines. It provides an overview of the key challenges that face scientific and engineering communities in the context of huge databases of turbulence information currently being generated, yet poorly mined. These challenges include coherent structures and their control, wall turbulence and control, multi-scale turbulence, the impact of turbulence on energy generation and turbulence data manipulation strategies. The motivation for this volume is to assist the reader to make physical sense of these data deluges so as to inform both the research community as well as to advance practical outcomes from what is learned. Outcomes presented in this collection provide industry with information that impacts their activities, such as minimizing impact of wind farms, opportunities for understanding large scale wind events and large eddy simulation of the hydrodynamics of bays and lakes thereby increasing energy efficiencies, and minimizing emissions and noise from jet engines. Elucidates established, contemporary, and novel aspects of fluid turbulence - a ubiquitous yet poorly understood phenomena; Explores computer simulation of turbulence in the context of the emerging, unprecedented profusion of experimental data,which will need to be stewarded and archived; Examines a compendium of problems and issues that investigators can use to help formulate new promising research ideas; Makes the case for why funding agencies and scientists around the world need to lead a global effort to establish and steward large stores of turbulence data, rather than leaving them to individual researchers.

Modeling and Simulation of Turbulent Combustion

Modeling and Simulation of Turbulent Combustion PDF Author: Santanu De
Publisher: Springer
ISBN: 9811074100
Category : Science
Languages : en
Pages : 663

Book Description
This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.