Heteroepitaxy of Semiconductors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Heteroepitaxy of Semiconductors PDF full book. Access full book title Heteroepitaxy of Semiconductors by John E. Ayers. Download full books in PDF and EPUB format.

Heteroepitaxy of Semiconductors

Heteroepitaxy of Semiconductors PDF Author: John E. Ayers
Publisher: CRC Press
ISBN: 135183780X
Category : Technology & Engineering
Languages : en
Pages : 388

Book Description
Heteroepitaxy has evolved rapidly in recent years. With each new wave of material/substrate combinations, our understanding of how to control crystal growth becomes more refined. Most books on the subject focus on a specific material or material family, narrowly explaining the processes and techniques appropriate for each. Surveying the principles common to all types of semiconductor materials, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization is the first comprehensive, fundamental introduction to the field. This book reflects our current understanding of nucleation, growth modes, relaxation of strained layers, and dislocation dynamics without emphasizing any particular material. Following an overview of the properties of semiconductors, the author introduces the important heteroepitaxial growth methods and provides a survey of semiconductor crystal surfaces, their structures, and nucleation. With this foundation, the book provides in-depth descriptions of mismatched heteroepitaxy and lattice strain relaxation, various characterization tools used to monitor and evaluate the growth process, and finally, defect engineering approaches. Numerous examples highlight the concepts while extensive micrographs, schematics of experimental setups, and graphs illustrate the discussion. Serving as a solid starting point for this rapidly evolving area, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization makes the principles of heteroepitaxy easily accessible to anyone preparing to enter the field.

Heteroepitaxy of Semiconductors

Heteroepitaxy of Semiconductors PDF Author: John E. Ayers
Publisher: CRC Press
ISBN: 135183780X
Category : Technology & Engineering
Languages : en
Pages : 388

Book Description
Heteroepitaxy has evolved rapidly in recent years. With each new wave of material/substrate combinations, our understanding of how to control crystal growth becomes more refined. Most books on the subject focus on a specific material or material family, narrowly explaining the processes and techniques appropriate for each. Surveying the principles common to all types of semiconductor materials, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization is the first comprehensive, fundamental introduction to the field. This book reflects our current understanding of nucleation, growth modes, relaxation of strained layers, and dislocation dynamics without emphasizing any particular material. Following an overview of the properties of semiconductors, the author introduces the important heteroepitaxial growth methods and provides a survey of semiconductor crystal surfaces, their structures, and nucleation. With this foundation, the book provides in-depth descriptions of mismatched heteroepitaxy and lattice strain relaxation, various characterization tools used to monitor and evaluate the growth process, and finally, defect engineering approaches. Numerous examples highlight the concepts while extensive micrographs, schematics of experimental setups, and graphs illustrate the discussion. Serving as a solid starting point for this rapidly evolving area, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization makes the principles of heteroepitaxy easily accessible to anyone preparing to enter the field.

Epitaxial Silicon Technology

Epitaxial Silicon Technology PDF Author: B. Jayant Baliga
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 342

Book Description
Silicon vapor phase epitaxy / H.M. Liaw and J.W. Rose -- Silicon molecular beam epitaxy / Subramanian S. Iyer -- Silicon liquid phase epitaxy / B. Jayant Baliga -- Silicon on sapphire heteroepitaxy / Prahalad K. Vasudev -- Silicon-on-insulator epitaxy / Hon Wai Lam.

Heteroepitaxy of Semiconductors

Heteroepitaxy of Semiconductors PDF Author: John E. Ayers
Publisher: CRC Press
ISBN: 1420006649
Category : Technology & Engineering
Languages : en
Pages : 476

Book Description
Heteroepitaxy has evolved rapidly in recent years. With each new wave of material/substrate combinations, our understanding of how to control crystal growth becomes more refined. Most books on the subject focus on a specific material or material family, narrowly explaining the processes and techniques appropriate for each. Surveying the principles common to all types of semiconductor materials, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization is the first comprehensive, fundamental introduction to the field. This book reflects our current understanding of nucleation, growth modes, relaxation of strained layers, and dislocation dynamics without emphasizing any particular material. Following an overview of the properties of semiconductors, the author introduces the important heteroepitaxial growth methods and provides a survey of semiconductor crystal surfaces, their structures, and nucleation. With this foundation, the book provides in-depth descriptions of mismatched heteroepitaxy and lattice strain relaxation, various characterization tools used to monitor and evaluate the growth process, and finally, defect engineering approaches. Numerous examples highlight the concepts while extensive micrographs, schematics of experimental setups, and graphs illustrate the discussion. Serving as a solid starting point for this rapidly evolving area, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization makes the principles of heteroepitaxy easily accessible to anyone preparing to enter the field.

GaP Heteroepitaxy on Si(100)

GaP Heteroepitaxy on Si(100) PDF Author: Henning Döscher
Publisher: Springer Science & Business Media
ISBN: 3319028804
Category : Technology & Engineering
Languages : en
Pages : 155

Book Description
Epitaxial integration of III-V semiconductors on silicon substrates has been desired over decades for high application potential in microelectronics, photovoltaics, and beyond. The performance of optoelectronic devices is still severely impaired by critical defect mechanisms driven by the crucial polar-on-nonpolar heterointerface. This thesis reports almost lattice-matched growth of thin gallium phosphide films as a viable model system for III-V/Si(100) interface investigations. The impact of antiphase disorder on the heteroepitaxial growth surface provides quantitative optical in situ access to one of the most notorious defect mechanisms, even in the vapor phase ambient common for compound semiconductor technology. Precise control over the surface structure of the Si(100) substrates prior to III-V nucleation prevents the formation of antiphase domains. The hydrogen-based process ambient enables the preparation of anomalous double-layer step structures on Si(100), highly beneficial for subsequent III-V integration.

Heteroepitaxy on Silicon: Volume 67

Heteroepitaxy on Silicon: Volume 67 PDF Author: J. C. C. Fan
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 304

Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.

Heteroepitaxy on Silicon: Volume 116

Heteroepitaxy on Silicon: Volume 116 PDF Author: H. K. Choi
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 578

Book Description
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.

Metalorganic Vapor Phase Epitaxy (MOVPE)

Metalorganic Vapor Phase Epitaxy (MOVPE) PDF Author: Stuart Irvine
Publisher: John Wiley & Sons
ISBN: 1119313015
Category : Technology & Engineering
Languages : en
Pages : 582

Book Description
Systematically discusses the growth method, material properties, and applications for key semiconductor materials MOVPE is a chemical vapor deposition technique that produces single or polycrystalline thin films. As one of the key epitaxial growth technologies, it produces layers that form the basis of many optoelectronic components including mobile phone components (GaAs), semiconductor lasers and LEDs (III-Vs, nitrides), optical communications (oxides), infrared detectors, photovoltaics (II-IV materials), etc. Featuring contributions by an international group of academics and industrialists, this book looks at the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring. It covers the most important materials from III-V and II-VI compounds to quantum dots and nanowires, including sulfides and selenides and oxides/ceramics. Sections in every chapter of Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications cover the growth of the particular materials system, the properties of the resultant material, and its applications. The book offers information on arsenides, phosphides, and antimonides; nitrides; lattice-mismatched growth; CdTe, MCT (mercury cadmium telluride); ZnO and related materials; equipment and safety; and more. It also offers a chapter that looks at the future of the technique. Covers, in order, the growth method, material properties, and applications for each material Includes chapters on the fundamentals of MOVPE and the key areas of equipment/safety, precursor chemicals, and growth monitoring Looks at important materials such as III-V and II-VI compounds, quantum dots, and nanowires Provides topical and wide-ranging coverage from well-known authors in the field Part of the Materials for Electronic and Optoelectronic Applications series Metalorganic Vapor Phase Epitaxy (MOVPE): Growth, Materials Properties and Applications is an excellent book for graduate students, researchers in academia and industry, as well as specialist courses at undergraduate/postgraduate level in the area of epitaxial growth (MOVPE/ MOCVD/ MBE).

Stress and Strain Engineering at Nanoscale in Semiconductor Devices

Stress and Strain Engineering at Nanoscale in Semiconductor Devices PDF Author: Chinmay K. Maiti
Publisher: CRC Press
ISBN: 1000404935
Category : Science
Languages : en
Pages : 275

Book Description
Anticipating a limit to the continuous miniaturization (More-Moore), intense research efforts are being made to co-integrate various functionalities (More-than-Moore) in a single chip. Currently, strain engineering is the main technique used to enhance the performance of advanced semiconductor devices. Written from an engineering applications standpoint, this book encompasses broad areas of semiconductor devices involving the design, simulation, and analysis of Si, heterostructure silicongermanium (SiGe), and III-N compound semiconductor devices. The book provides the background and physical insight needed to understand the new and future developments in the technology CAD (TCAD) design at the nanoscale. Features Covers stressstrain engineering in semiconductor devices, such as FinFETs and III-V Nitride-based devices Includes comprehensive mobility model for strained substrates in global and local strain techniques and their implementation in device simulations Explains the development of strain/stress relationships and their effects on the band structures of strained substrates Uses design of experiments to find the optimum process conditions Illustrates the use of TCAD for modeling strain-engineered FinFETs for DC and AC performance predictions This book is for graduate students and researchers studying solid-state devices and materials, microelectronics, systems and controls, power electronics, nanomaterials, and electronic materials and devices.

Introduction to Microfabrication

Introduction to Microfabrication PDF Author: Sami Franssila
Publisher: John Wiley & Sons
ISBN: 1119991897
Category : Technology & Engineering
Languages : en
Pages : 534

Book Description
This accessible text is now fully revised and updated, providing an overview of fabrication technologies and materials needed to realize modern microdevices. It demonstrates how common microfabrication principles can be applied in different applications, to create devices ranging from nanometer probe tips to meter scale solar cells, and a host of microelectronic, mechanical, optical and fluidic devices in between. Latest developments in wafer engineering, patterning, thin films, surface preparation and bonding are covered. This second edition includes: expanded sections on MEMS and microfluidics related fabrication issues new chapters on polymer and glass microprocessing, as well as serial processing techniques 200 completely new and 200 modified figures more coverage of imprinting techniques, process integration and economics of microfabrication 300 homework exercises including conceptual thinking assignments, order of magnitude estimates, standard calculations, and device design and process analysis problems solutions to homework problems on the complementary website, as well as PDF slides of the figures and tables within the book With clear sections separating basic principles from more advanced material, this is a valuable textbook for senior undergraduate and beginning graduate students wanting to understand the fundamentals of microfabrication. The book also serves as a handy desk reference for practicing electrical engineers, materials scientists, chemists and physicists alike. www.wiley.com/go/Franssila_Micro2e

Silicon Molecular Beam Epitaxy

Silicon Molecular Beam Epitaxy PDF Author: E. Kasper
Publisher: CRC Press
ISBN: 1351085077
Category : Technology & Engineering
Languages : en
Pages : 306

Book Description
This subject is divided into two volumes. Volume I is on homoepitaxy with the necessary systems, techniques, and models for growth and dopant incorporation. Three chapters on homoepitaxy are followed by two chapters describing the different ways in which MBE may be applied to create insulator/Si stackings which may be used for three-dimensional circuits. The two remaining chapters in Volume I are devoted to device applications. The first three chapters of Volume II treat all aspects of heteroepitaxy with the exception of the epitaxial insulator/Si structures already treated in volume I.