Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Modelling and Simulation of Turbulent Heat Transfer
Author: B. Sundén
Publisher: WIT Press
ISBN: 1853129569
Category : Science
Languages : en
Pages : 361
Book Description
Providing invaluable information for both graduate researchers and R & D engineers in industry and consultancy, this book focuses on the modelling and simulation of fluid flow and thermal transport phenomena in turbulent convective flows. Its overall objective is to present state-of-the-art knowledge in order to predict turbulent heat transfer processes in fundamental and idealized flows as well as in engineering applications. The chapters, which are invited contributions from some of the most prominent scientists in this field, cover a wide range of topics and follow a unified outline and presentation to aid accessibility.
Publisher: WIT Press
ISBN: 1853129569
Category : Science
Languages : en
Pages : 361
Book Description
Providing invaluable information for both graduate researchers and R & D engineers in industry and consultancy, this book focuses on the modelling and simulation of fluid flow and thermal transport phenomena in turbulent convective flows. Its overall objective is to present state-of-the-art knowledge in order to predict turbulent heat transfer processes in fundamental and idealized flows as well as in engineering applications. The chapters, which are invited contributions from some of the most prominent scientists in this field, cover a wide range of topics and follow a unified outline and presentation to aid accessibility.
Heat Transfer in Gas Turbines
Author: Bengt Sundén
Publisher: Witpress
ISBN:
Category : Medical
Languages : en
Pages : 544
Book Description
This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.
Publisher: Witpress
ISBN:
Category : Medical
Languages : en
Pages : 544
Book Description
This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.
Gas Turbine Blade Cooling
Author: Chaitanya D Ghodke
Publisher: SAE International
ISBN: 0768095026
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.
Publisher: SAE International
ISBN: 0768095026
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.
Proceedings of the ASME Turbo Expo 2002 Presented at the 2002 ASME Turbo Expo, June 3-6, 2002, Amsterdam, the Netherlands
Author:
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 726
Book Description
Annotation This is Volume 1 of five volumes that comprise the proceedings of the June 2002 conference, sponsored by the International Gas Turbine Institute (IGTI), a technical institute of the American Society of Mechanical Engineers. The purpose of the conference was to facilitate international exchange and development of educational and technical information related to the design, application, manufacture, operation, maintenance, and environmental impact of all types of gas engines. With an emphasis upon the need for more efficient, cleaner, and more reliable gas turbines, the approximately 130 articles cover various technical aspects of aircraft engines; coal, biomass, and alternative fuels; combustion and fuels; education; electric power; and vehicular and small turbomachines. There is no subject index. Annotation c. Book News, Inc., Portland, OR (booknews.com).
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 726
Book Description
Annotation This is Volume 1 of five volumes that comprise the proceedings of the June 2002 conference, sponsored by the International Gas Turbine Institute (IGTI), a technical institute of the American Society of Mechanical Engineers. The purpose of the conference was to facilitate international exchange and development of educational and technical information related to the design, application, manufacture, operation, maintenance, and environmental impact of all types of gas engines. With an emphasis upon the need for more efficient, cleaner, and more reliable gas turbines, the approximately 130 articles cover various technical aspects of aircraft engines; coal, biomass, and alternative fuels; combustion and fuels; education; electric power; and vehicular and small turbomachines. There is no subject index. Annotation c. Book News, Inc., Portland, OR (booknews.com).
Heat Transfer in Gas Turbine Systems
Author: Richard J. Goldstein
Publisher:
ISBN: 9781573313285
Category : Calorimetry
Languages : en
Pages : 0
Book Description
Explores recent developments in heat transfer and thermal control applied to modern high-temperature gas turbine systems. It examines experimental results and techniques computational studies and methods and design recommendations. Aspects of heat transfer in rotating machinery are studied as well as thermal aspects of other sections of the turbine (e.g. the compressor). Proceedings of an August 2000 conference.
Publisher:
ISBN: 9781573313285
Category : Calorimetry
Languages : en
Pages : 0
Book Description
Explores recent developments in heat transfer and thermal control applied to modern high-temperature gas turbine systems. It examines experimental results and techniques computational studies and methods and design recommendations. Aspects of heat transfer in rotating machinery are studied as well as thermal aspects of other sections of the turbine (e.g. the compressor). Proceedings of an August 2000 conference.
Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer
Author: Vijay K. Garg
Publisher:
ISBN:
Category :
Languages : en
Pages : 26
Book Description
Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas - June 5-8, 1995.
Publisher:
ISBN:
Category :
Languages : en
Pages : 26
Book Description
Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas - June 5-8, 1995.
Springer Handbook of Experimental Fluid Mechanics
Author: Cameron Tropea
Publisher: Springer Science & Business Media
ISBN: 3540251413
Category : Science
Languages : en
Pages : 1570
Book Description
Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.
Publisher: Springer Science & Business Media
ISBN: 3540251413
Category : Science
Languages : en
Pages : 1570
Book Description
Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.
Proceedings of the ASME Turbo Expo ...
Journal of Thermophysics and Heat Transfer
Author:
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 996
Book Description
This journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. It publishes papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include conductive, convective, and radiative modes alone or in combination and the effects of the environment.
Publisher:
ISBN:
Category : Heat
Languages : en
Pages : 996
Book Description
This journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. It publishes papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include conductive, convective, and radiative modes alone or in combination and the effects of the environment.