Harmonic Functions on Trees and Buildings PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Harmonic Functions on Trees and Buildings PDF full book. Access full book title Harmonic Functions on Trees and Buildings by Adam Korǹyi (et al.). Download full books in PDF and EPUB format.

Harmonic Functions on Trees and Buildings

Harmonic Functions on Trees and Buildings PDF Author: Adam Korǹyi (et al.)
Publisher: American Mathematical Soc.
ISBN: 082180605X
Category : Mathematics
Languages : en
Pages : 194

Book Description
This volume presents the proceedings of the workshop "Harmonic Functions on Graphs" held at the Graduate Centre of CUNY in the autumn of 1995. The main papers present material from four minicourses given by leading experts: D. Cartwright, A. Figà-Talamanca, S. Sawyer, and T. Steger. These minicrouses are introductions which gradually progress to deeper and less known branches of the subject. One of the topics treated is buildings, which are discrete analogues of symmetric spaces of arbitrary rank; buildings of rank are trees. Harmonic analysis on buildings is a fairly new and important field of research. One of the minicourses discusses buildings from the combinatorial perspective and another examines them from the p-adic perspective. the third minicourse deals with the connections of trees with p-adic analysis, and the fourth deals with random walks, ie., with the probabilistic side of harmonic functions on trees. The book also contains the extended abstracts of 19 of the 20 lectures given by the participants on their recent results. These abstracts, well detailed and clearly understandable, give a good cross-section of the present state of research in the field.

Harmonic Functions on Trees and Buildings

Harmonic Functions on Trees and Buildings PDF Author: Adam Korǹyi (et al.)
Publisher: American Mathematical Soc.
ISBN: 082180605X
Category : Mathematics
Languages : en
Pages : 194

Book Description
This volume presents the proceedings of the workshop "Harmonic Functions on Graphs" held at the Graduate Centre of CUNY in the autumn of 1995. The main papers present material from four minicourses given by leading experts: D. Cartwright, A. Figà-Talamanca, S. Sawyer, and T. Steger. These minicrouses are introductions which gradually progress to deeper and less known branches of the subject. One of the topics treated is buildings, which are discrete analogues of symmetric spaces of arbitrary rank; buildings of rank are trees. Harmonic analysis on buildings is a fairly new and important field of research. One of the minicourses discusses buildings from the combinatorial perspective and another examines them from the p-adic perspective. the third minicourse deals with the connections of trees with p-adic analysis, and the fourth deals with random walks, ie., with the probabilistic side of harmonic functions on trees. The book also contains the extended abstracts of 19 of the 20 lectures given by the participants on their recent results. These abstracts, well detailed and clearly understandable, give a good cross-section of the present state of research in the field.

Random Walks, Boundaries and Spectra

Random Walks, Boundaries and Spectra PDF Author: Daniel Lenz
Publisher: Springer Science & Business Media
ISBN: 3034602448
Category : Mathematics
Languages : en
Pages : 345

Book Description
These proceedings represent the current state of research on the topics 'boundary theory' and 'spectral and probability theory' of random walks on infinite graphs. They are the result of the two workshops held in Styria (Graz and St. Kathrein am Offenegg, Austria) between June 29th and July 5th, 2009. Many of the participants joined both meetings. Even though the perspectives range from very different fields of mathematics, they all contribute with important results to the same wonderful topic from structure theory, which, by extending a quotation of Laurent Saloff-Coste, could be described by 'exploration of groups by random processes'.

Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 866

Book Description


Homotopy Invariant Algebraic Structures

Homotopy Invariant Algebraic Structures PDF Author: Jean-Pierre Meyer
Publisher: American Mathematical Soc.
ISBN: 082181057X
Category : Mathematics
Languages : en
Pages : 392

Book Description
This volume presents the proceedings of the conference held in honor of J. Michael Boardman's 60th birthday. It brings into print his classic work on conditionally convergent spectral sequences. Over the past 30 years, it has become evident that some of the deepest questions in algebra are best understood against the background of homotopy theory. Boardman and Vogt's theory of homotopy-theoretic algebraic structures and the theory of spectra, for example, were two benchmark breakthroughs underlying the development of algebraic $K$-theory and the recent advances in the theory of motives. The volume begins with short notes by Mac Lane, May, Stasheff, and others on the early and recent history of the subject. But the bulk of the volume consists of research papers on topics that have been strongly influenced by Boardman's work. Articles give readers a vivid sense of the current state of the theory of "homotopy-invariant algebraic structures". Also included are two major foundational papers by Goerss and Strickland on applications of methods of algebra (i.e., Dieudonné modules and formal schemes) to problems of topology. Boardman is known for the depth and wit of his ideas. This volume is intended to reflect and to celebrate those fine characteristics.

Function Spaces

Function Spaces PDF Author: Krzysztof Jarosz
Publisher: American Mathematical Soc.
ISBN: 0821809393
Category : Mathematics
Languages : en
Pages : 384

Book Description
This proceedings volume presents 36 papers given by leading experts during the Third Conference on Function Spaces held at Southern Illinois University at Edwardsville. A wide range of topics in the subject area are covered. Most papers are written for nonexperts, so the book can serve as a good introduction to the topic for those interested in this area. The book presents the following broad range of topics, including spaces and algebras of analytic functions of one and of many variables, $Lp$ spaces, spaces of Banach-valued functions, isometries of function spaces, geometry of Banach spaces and related subjects. Known results, open problems, and new discoveries are featured. At the time of publication, information about the book, the conference, and a list and pictures of contributors are available on the Web at www.siue.edu/MATH/conference.htm.

Random Walks on Infinite Graphs and Groups

Random Walks on Infinite Graphs and Groups PDF Author: Wolfgang Woess
Publisher: Cambridge University Press
ISBN: 0521552923
Category : Mathematics
Languages : en
Pages : 350

Book Description
The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.

Real Algebraic Geometry and Ordered Structures

Real Algebraic Geometry and Ordered Structures PDF Author: Charles N. Delzell
Publisher: American Mathematical Soc.
ISBN: 0821808044
Category : Mathematics
Languages : en
Pages : 320

Book Description
This volume contains 16 carefully refereed articles by participants in the Special Semester and the AMS Special Session on Real Algebraic Geometry and Ordered Structures held at Louisiana State University and Southern University (Baton Rouge). The 23 contributors to this volume were among the 75 mathematicians from 15 countries who participated in the special semester. Topics include the topology of real algebraic curves (Hilbert's 16th problem), moduli of real algebraic curves, effective sums of squares of real forms (Hilbert's 17th problem), efficient real quantifier elimination, subanalytic sets and stratifications, semialgebraic singularity theory, radial vector fields, exponential functions and valuations on nonarchimedean ordered fields, valued field extensions, partially ordered and lattice-ordered rings, rings of continuous functions, spectra of rings, and abstract spaces of (higher-level) orderings and real places. This volume provides a good overview of the state of the art in this area in the 1990s. It includes both expository and original research papers by top workers in this thriving field. The authors and editors strived to make the volume useful to a wide audience (including students and researchers) interested in real algebraic geometry and ordered structures-two subjects that are obviously related, but seldom brought together.

Higher Homotopy Structures in Topology and Mathematical Physics

Higher Homotopy Structures in Topology and Mathematical Physics PDF Author: James D. Stasheff
Publisher: American Mathematical Soc.
ISBN: 082180913X
Category : Mathematics
Languages : en
Pages : 338

Book Description
Since the work of Stasheff and Sugawara in the 1960s on recognition of loop space structures on $H$-spaces, the notion of higher homotopies has grown to be a fundamental organizing principle in homotopy theory, differential graded homological algebra and even mathematical physics. This book presents the proceedings from a conference held on the occasion of Stasheff's 60th birthday at Vassar in June 1996. It offers a collection of very high quality papers and includes some fundamental essays on topics that open new areas.

Harmonic Functions and Potentials on Finite or Infinite Networks

Harmonic Functions and Potentials on Finite or Infinite Networks PDF Author: Victor Anandam
Publisher: Springer Science & Business Media
ISBN: 3642213995
Category : Mathematics
Languages : en
Pages : 152

Book Description
Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory.

Fatou Type Theorems

Fatou Type Theorems PDF Author: Fausto Di Biase
Publisher: Springer Science & Business Media
ISBN: 9780817639761
Category : Mathematics
Languages : en
Pages : 180

Book Description
A basic principle governing the boundary behaviour of holomorphic func tions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions ad mit a boundary limit, if we approach the bounda-ry point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean half spaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of ho)omor phic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones.