Handbook of Number Theory I

Handbook of Number Theory I PDF Author: József Sándor
Publisher: Springer Science & Business Media
ISBN: 1402042159
Category : Mathematics
Languages : en
Pages : 638

Book Description
This handbook covers a wealth of topics from number theory, special attention being given to estimates and inequalities. As a rule, the most important results are presented, together with their refinements, extensions or generalisations. These may be applied to other aspects of number theory, or to a wide range of mathematical disciplines. Cross-references provide new insight into fundamental research. Audience: This is an indispensable reference work for specialists in number theory and other mathematicians who need access to some of these results in their own fields of research.

Excursions in Number Theory

Excursions in Number Theory PDF Author: Charles Stanley Ogilvy
Publisher: Courier Corporation
ISBN: 9780486257785
Category : Mathematics
Languages : en
Pages : 196

Book Description
Challenging, accessible mathematical adventures involving prime numbers, number patterns, irrationals and iterations, calculating prodigies, and more. No special training is needed, just high school mathematics and an inquisitive mind. "A splendidly written, well selected and presented collection. I recommend the book unreservedly to all readers." — Martin Gardner.

Number Theory

Number Theory PDF Author: Róbert Freud
Publisher: American Mathematical Soc.
ISBN: 1470452758
Category : Education
Languages : en
Pages : 549

Book Description
Number Theory is a newly translated and revised edition of the most popular introductory textbook on the subject in Hungary. The book covers the usual topics of introductory number theory: divisibility, primes, Diophantine equations, arithmetic functions, and so on. It also introduces several more advanced topics including congruences of higher degree, algebraic number theory, combinatorial number theory, primality testing, and cryptography. The development is carefully laid out with ample illustrative examples and a treasure trove of beautiful and challenging problems. The exposition is both clear and precise. The book is suitable for both graduate and undergraduate courses with enough material to fill two or more semesters and could be used as a source for independent study and capstone projects. Freud and Gyarmati are well-known mathematicians and mathematical educators in Hungary, and the Hungarian version of this book is legendary there. The authors' personal pedagogical style as a facet of the rich Hungarian tradition shines clearly through. It will inspire and exhilarate readers.

数论导引

数论导引 PDF Author:
Publisher:
ISBN: 9787115156112
Category : Number theory
Languages : zh-CN
Pages : 435

Book Description
本书内容包括素数、无理数、同余、费马定理、连分数、不定方程、二次域、算术函数、分化等。

A Course in Number Theory and Cryptography

A Course in Number Theory and Cryptography PDF Author: Neal Koblitz
Publisher: Springer Science & Business Media
ISBN: 1441985921
Category : Mathematics
Languages : en
Pages : 245

Book Description
This is a substantially revised and updated introduction to arithmetic topics, both ancient and modern, that have been at the centre of interest in applications of number theory, particularly in cryptography. As such, no background in algebra or number theory is assumed, and the book begins with a discussion of the basic number theory that is needed. The approach taken is algorithmic, emphasising estimates of the efficiency of the techniques that arise from the theory, and one special feature is the inclusion of recent applications of the theory of elliptic curves. Extensive exercises and careful answers are an integral part all of the chapters.

Analytic Number Theory

Analytic Number Theory PDF Author: Henryk Iwaniec
Publisher: American Mathematical Soc.
ISBN: 1470467704
Category : Education
Languages : en
Pages : 615

Book Description
Analytic Number Theory distinguishes itself by the variety of tools it uses to establish results. One of the primary attractions of this theory is its vast diversity of concepts and methods. The main goals of this book are to show the scope of the theory, both in classical and modern directions, and to exhibit its wealth and prospects, beautiful theorems, and powerful techniques. The book is written with graduate students in mind, and the authors nicely balance clarity, completeness, and generality. The exercises in each section serve dual purposes, some intended to improve readers' understanding of the subject and others providing additional information. Formal prerequisites for the major part of the book do not go beyond calculus, complex analysis, integration, and Fourier series and integrals. In later chapters automorphic forms become important, with much of the necessary information about them included in two survey chapters.

Number Theory for Computing

Number Theory for Computing PDF Author: Song Y. Yan
Publisher: Springer Science & Business Media
ISBN: 366204773X
Category : Computers
Languages : en
Pages : 454

Book Description
This book provides a good introduction to the classical elementary number theory and the modern algorithmic number theory, and their applications in computing and information technology, including computer systems design, cryptography and network security. In this second edition proofs of many theorems have been provided, further additions and corrections were made.

Number Theory

Number Theory PDF Author:
Publisher: Academic Press
ISBN: 0080873324
Category : Mathematics
Languages : en
Pages : 449

Book Description
This book is written for the student in mathematics. Its goal is to give a view of the theory of numbers, of the problems with which this theory deals, and of the methods that are used. We have avoided that style which gives a systematic development of the apparatus and have used instead a freer style, in which the problems and the methods of solution are closely interwoven. We start from concrete problems in number theory. General theories arise as tools for solving these problems. As a rule, these theories are developed sufficiently far so that the reader can see for himself their strength and beauty, and so that he learns to apply them. Most of the questions that are examined in this book are connected with the theory of diophantine equations - that is, with the theory of the solutions in integers of equations in several variables. However, we also consider questions of other types; for example, we derive the theorem of Dirichlet on prime numbers in arithmetic progressions and investigate the growth of the number of solutions of congruences.

Handbook of Proof Theory

Handbook of Proof Theory PDF Author: S.R. Buss
Publisher: Elsevier
ISBN: 0080533183
Category : Mathematics
Languages : en
Pages : 823

Book Description
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.

Topics And Methods In Q-series

Topics And Methods In Q-series PDF Author: James Mc Laughlin
Publisher: World Scientific
ISBN: 9813223383
Category : Mathematics
Languages : en
Pages : 401

Book Description
The book provides a comprehensive introduction to the many aspects of the subject of basic hypergeometric series. The book essentially assumes no prior knowledge but eventually provides a comprehensive introduction to many important topics. After developing a treatment of historically important topics such as the q-binomial theorem, Heine's transformation, the Jacobi triple product identity, Ramanujan's 1-psi-1 summation formula, Bailey's 6-psi-6 summation formula and the Rogers-Fine identity, the book goes on to delve more deeply into important topics such as Bailey- and WP-Bailey pairs and chains, q-continued fractions, and mock theta functions. There are also chapters on other topics such as Lambert series and combinatorial proofs of basic hypergeometric identities.The book could serve as a textbook for the subject at the graduate level and as a textbook for a topic course at the undergraduate level (earlier chapters). It could also serve as a reference work for researchers in the area.