Handbook of Liquid Crystal Research PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Handbook of Liquid Crystal Research PDF full book. Access full book title Handbook of Liquid Crystal Research by Peter J. Collings. Download full books in PDF and EPUB format.

Handbook of Liquid Crystal Research

Handbook of Liquid Crystal Research PDF Author: Peter J. Collings
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 632

Book Description
The Handbook of Liquid Crystal Research deals with all the important recent advances in liquid crystalline materials. It contains in one volume the results of technical and theoretical work done in the last 15 years.

Handbook of Liquid Crystal Research

Handbook of Liquid Crystal Research PDF Author: Peter J. Collings
Publisher: Oxford University Press, USA
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 632

Book Description
The Handbook of Liquid Crystal Research deals with all the important recent advances in liquid crystalline materials. It contains in one volume the results of technical and theoretical work done in the last 15 years.

Textures of Liquid Crystals

Textures of Liquid Crystals PDF Author: Ingo Dierking
Publisher: John Wiley & Sons
ISBN: 9783527307258
Category : Science
Languages : en
Pages : 238

Book Description
Table of contents

Liquid Crystals

Liquid Crystals PDF Author: Carsten Tschierske
Publisher: Springer Science & Business Media
ISBN: 3642275915
Category : Science
Languages : en
Pages : 419

Book Description
Fluorinated Liquid Crystals: Design of Soft Nanostructures and Increased Complexity of Self-Assembly by Perfluorinated Segments, by Carsten Tschierske Liquid Crystalline Crown Ethers, by Martin Kaller and Sabine Laschat Star-Shaped Mesogens – Hekates: The Most Basic Star Structure with Three Branches, by Matthias Lehmann DNA-Based Soft Phases, by Tommaso Bellini, Roberto Cerbino and Giuliano Zanchetta Polar and Apolar Columnar Phases Made of Bent-Core Mesogens, by N. Vaupotič, D. Pociecha and E. Gorecka Spontaneous Achiral Symmetry Breaking in Liquid Crystalline Phases, by H. Takezoe Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles, by Oana Stamatoiu, Javad Mirzaei, Xiang Feng and Torsten Hegmann Stimuli-Responsive Photoluminescent Liquid Crystals, by Shogo Yamane, Kana Tanabe, Yoshimitsu Sagara and Takashi Kato

Thermotropic Liquid Crystals, Fundamentals

Thermotropic Liquid Crystals, Fundamentals PDF Author: Ger Vertogen
Publisher: Springer Science & Business Media
ISBN: 3642831338
Category : Science
Languages : en
Pages : 326

Book Description
The aim of this book is to give a unified and critical account of the fundamental aspects of liquid crystals. Preference is given to discussing the assumptions made in developing theories and analyzing experimental data rather than to attempting to compile all the latest results. The book has four parts. Part I is quite descriptive in character and gives a general overview of the various liquid crystalline phases. Part II deals with the macroscopic continuum theory of liquid crystals and gives a systematic development of the theory from a tensorial point of view thus emphasizing the relevant symmetries. Part III concentrates on experiments that provide microscopic information on the orientational behaviour of the molecules. Finally Part IV discusses the theory of the various phases and their attendant phase transitions from both a Landau and a molecular-statistical point of view. Simplifying the various models as far as possible, it critically examines the merits of a molecular-statistical approach.

Handbook of Liquid Crystals, Volume 2A

Handbook of Liquid Crystals, Volume 2A PDF Author: Dietrich Demus
Publisher: John Wiley & Sons
ISBN: 3527620567
Category : Technology & Engineering
Languages : en
Pages : 530

Book Description
The Handbook of Liquid Crystals is a unique compendium of knowledge on all aspects of liquid crystals. In over 2000 pages the Handbook provides detailed information on the basic principles of both low- and high-molecular weight materials, as well as the synthesis, characterization, modification, and applications (such as in computer displays or as structural materials) of all types of liquid crystals. The five editors of the Handbook are internationally renowned experts from both industry and academia and have drawn together over 70 leading figures in the field as authors. The four volumes of the Handbook are designed both to be used together or as stand-alone reference sources. Some users will require the whole set, others will be best served with one or two of the volumes. Volume 1 deals with the basic physical and chemical principles of liquid crystals, including structure-property relationships, nomenclature, phase behavior, characterization methods, and general synthesis and application strategies. As such this volume provides an excellent introduction to the field and a powerful learning and teaching tool for graduate students and above. Volumes 2A and 2B concentrate on low-molecular weight materials, for example those typically used in display technology. A high quality survey of the literature is provided along with full details of molecular design strategies, phase characterization and control, and applications development. These volumes are therefore by far the most detailed reference sources on these industrially very important materials, ideally suited for professionals in the field. Volume 3 concentrates on high-molecular weight, or polymeric, liquid crystals, some of which are found in structural applications and others occur as natural products of living systems. A high-quality literature survey is complemented by full detail of the synthesis, processing, analysis, and applications of all important materials classes. This volume is the most comprehensive reference source on these materials, and is therefore ideally suited for professionals in the field.

Liquid Crystals

Liquid Crystals PDF Author: Benjamin Outram
Publisher:
ISBN: 9780750313643
Category : Liquid crystals
Languages : en
Pages : 0

Book Description
Despite many of us staring at liquid crystals--in the form of liquid-crystal displays--for large portions of our waking life, for many their science and beauty is an untold story full of surprise and wonder. This book takes you on a photographic journey through the science of liquid crystals. By the end you'll be familiar with what they are, how they form and their role in producing the complexity of life on Earth. Presented in non-technical language, without any mathematics, this accessible text looks at spider webs, silk, display technology, lasers, dyes, detergents, DNA, cell membranes, drug delivery mechanisms, anaesthesia and optical computing. Presented in non-technical language and without any mathematics, this book is accessible to all, even if you have no prior knowledge of physics or chemistry.

The Physics of Liquid Crystals

The Physics of Liquid Crystals PDF Author: P. G. de Gennes
Publisher: Oxford University Press
ISBN: 9780198517856
Category : Science
Languages : en
Pages : 620

Book Description
This new edition of the classic text incorporates the many advances in knowledge about liquid crystals that have taken place since its initial publication in 1974. Entirely new chapters describe the types and properties of liquid crystals in terms of both recently discovered phases and current insight into the nature of local order and isotropic-to-nematic transition. There is an extensive discussion of the symmetrical, macroscopic, dynamic, and defective properties of smectics and columnar phases, with emphasis on order-of-magnitude considerations, all illustrated with numerous descriptions of experimental arrangements. The final chapter is devoted to phase transitions in smectics, including the celebrated analogy between smectic A and superconductors. This new version's topicality and breadth of coverage will ensure that it remains an indispensable guide for researchers and graduate students in mechanics and engineering, and in chemical, solid state, and statistical physics.

Liquid Crystal Elastomers

Liquid Crystal Elastomers PDF Author: Mark Warner
Publisher: Oxford University Press
ISBN: 9780199214860
Category : Mathematics
Languages : en
Pages : 423

Book Description
This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.

The Oxford Handbook of Soft Condensed Matter

The Oxford Handbook of Soft Condensed Matter PDF Author: Eugene Michael Terentjev
Publisher: Oxford University Press, USA
ISBN: 0199667926
Category : Science
Languages : en
Pages : 605

Book Description
This handbook will provide the reader with a profound introduction to the key subjects comprising the relatively new topic of Soft Condensed Matter. It will provide students and researchers with an authoritative overview of the field, identify key principles at play, and the most prominent ways of further development.

Dielectric Properties Of Liquid Crystals

Dielectric Properties Of Liquid Crystals PDF Author: Zbigniew Galewski
Publisher:
ISBN: 9788178952888
Category : Liquid crystals
Languages : en
Pages : 283

Book Description
Introduction - This book, consisting of 10 chapters, should be treated as a complement that brings the reader up to date with the latest contributions to the rich literature on liquid crystals. A prominent place in this literature is occupied by the dielectric properties which are important in estimation of usefulness of these materials and in understanding the molecular processes determining various mesophases. In the field of dielectrics in general, and in connection with the structure and phase transitions the entries in references [1-14] can be recommended. With respect to general aspects of liquid-crystalline properties and molecular dynamics one can point out the references [15-36]. Most of them contain as well chapters on dielectric properties. In addition there is a number of books and monographs related strictly to the dielectric properties of liquid crystals, in particular references [37-45]. For the readers less familiar with this topic and interested in the basic knowledge of dielectric aspects of liquid crystals one can suggest the reviews [46-48]. Basic difference between properties of isotropic liquid and liquid crystal lies in the existence in the latter case of at least one degree of order. The ordering can be also considered with respect to a crystalline phase. Thus introducing at least one degree of disorder (rotational or translational) causes the occurrence of a mesophase which, however, is not identical with the liquid-crystalline phase. If the mesophase is to be liquid-crystalline, it should possess at least one translational degree of disorder. The disorder connected with further degrees of freedom leads to rich polymorphism. The most characteristic feature of liquid-crystalline phases is a precisely defined degree of disorder of molecules building these phases and their anisotropy which is exhibited in molecular structure and all measurable physical parameters such as polarizability. This is the reason why such phases are also called anisotropic liquids. The insertion into the molecules that form mesophases of fragments either chiral or influencing antagonistically already present fragments (e.g. by replacing one alkyl group by perfluorinated chain) leads to additional interactions which compete with interactions responsible for the stability of liquid-crystalline phases. This causes the frustration phenomena, i.e. the mutual overlapping of interactions frequently responsible for opposite effects. These induced phenomena conduce to unexpected structures (banana-type or columnar-type mesophases) and properties such as helicity, ferroelectricity or antiferroelectricity. Of particular interest seem to be ferroelectric liquid crystals (chiral tilted smectics such as SmC*, SmI* and others) showing collective modes: tilt fluctuations (soft modes) and phase fluctuations (Goldstone mode). Unusual progress observed in the last half-century has occurred due to use of some additional interacting fragments and structural details. Liquid crystalline polymers and metalomesogens present rapidly growing branches of knowledge of liquid crystal. Ferromagnetism and superconductivity of liquid crystals still pose a challenge. In this monograph we present different aspects of dielectric properties of mesogens. Chapter 1 presented by Otowski is dedicated to general problems of the molecular dipole s motion in electric field. Based on the broadband dielectric studies results of a few liquid-crystalline substances, their dielectric behavior is discussed by means of Nordio-Rigatti-Segre theory. The pretransitional anomalies observed in isotropic phase close to the phase transitions by means of dielectric measurements are described by Drozd-Rzoska, Rzoska and Janik in Chapter 2. An extended part of this book is devoted to chiral liquid crystals, the importance of which for applications and expectations for them are continuously increasing. The principles of the dielectric behavior of chiral liquid-crystalline compounds based on general considerations applying for other dipolar systems as well is presented by Hoffmann in Chapter 3. In general considerations based on the example of 12 selected substances showing extremely rich polymorphism Marzec, Mikulko, Wróbel and Haase analyze impressive behaviors of collective modes (Chapter 4). The problem of non-linear dielectric effects constitutes an important part of this book. A general introduction to the non-linear dielectric spectroscopy is contained in Chapter 5 elaborated by Kedziora, who concentrates himself on the isotropic phase, solutions and precritical phenomena. The problem of molecular properties of smectic materials and relaxation in ferroelectric liquid crystals with particular attention paid to electrooptic phenomena are discussed by Kuczynski in Chapter 6. Advantages of electrooptic methods applied to chiral tilted smectic liquid crystals with either ferroelectric or antiferroelectric dipole order are known. However, less popular problem of so called organic glass formers presented by Massalska-Arodz, Sciesinska, Sciesinski, Krawczyk, Inoba and Zielinski in Chapter 7 deserved attentions. Properties of these materials are discussed by using the results of complementary methods such as INS, QENS, adiabatic calorimetry and far-infrared spectra. Chapter 8, presented by Rózanski, is devoted to the dielectric properties of liquid crystals confined in porous matrices or dispersed throughout solid matrices. Such systems seem to be fascinating not only from the point of view of surface interactions but also due to attractive properties of dispersed systems in nanoscale. Of great value is also Chapter 9 by Kocot, Merkel, Sufin, Vij and Mehl describing dendrimeric liquid crystals built of molecules containing siloxane or carbosilazane cores. The problems of dynamics and ordering are discussed in terms of IR and dielectric spectroscopy results. Chapter 10, written by Urban, is committed to the relaxation processes in calamitic liquid crystals with emphasis on pressure and temperature effects. Finally let us direct readers attention to general references relating to the new liquid crystalline compounds [49] and IUPAC classification of these systems [50]. 1. Boettcher C. J. F., van Belle O.C., Bordewijk P. and Rip A., 1973, Theory of Electric Polarization, Vol.I: Dielectrics in Static Fields, 2nd revised edition, Elsevier Science Ltd, Amsterdam. 2. Boettcher C.J.F. and Bordewijk, 1978, Theory of Electric Polarization, Vol.II. Dielectrics in Time-dependent Fields, 2nd revised edition, Elsevier Science Ltd, Amsterdam. 3. Hill N., Vaughan W.E., Price A.H. and Davies M., 1969, Dielectric Properties and Molecular Behaviour, van Nostrand, London. 4. Froehlich H., 1958, Theory of Dielectrics, Oxford University Press, London. 5. von Hippel A.R., 1995, Dielectric Materials and Applications, Artech House Publishers. 6. Davies M., 1965, Some Electrical and Optical Aspects of Molecular Behaviour, Pergamon Press, Oxford. 7. Scaife B.K.P., 1998, Principle of Dielectrics, Revised edition, Oxford University Press, Clarendon, Oxford. 8. Riande E. and Diaz-Calleja R., 2004, Electrical Properties of Polymers, Marcel Dekker, NY. 9. Jonscher A.K., 1996, Universal Relaxation Law, Chelsea Dielectric Press Ltd, London. 10. Grigas J., 1996, Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials, Series: Ferroelectricity and Related Phenomena, Volume 9, Gordon and Breach Science Publishers, Philadelphia. 11. Runt J.P. and Fitzgerald J.J.(Eds.), 1997, Dielectric Spectroscopy of Polymeric Materials, American Chemical Society, Washington, DC. 12. Havriliak S. and Havriliak S.J., 1996, Dielectric and Mechanical Relaxation in Materials, Hanser Verlag, München. 13. Gaiduk V.I. and McConnel J.R., 1999, Dielectric Relaxation and Dynamics of Polar Molecules, World Scientific Pub. Co.Inc., Singapore. 14. Kremer F. and Schönhals A. (Eds) 2002, Broadband Dielectric Spectroscopy, Springer, NY. 15. Demus D., Goodby J., Gray G.W., Spiess H.W. and Vill V. (Eds.), 1998, Handbook of Liquid Crystals, 4-Volume Set, Wiley-VCH, Veinheim. 16. Demus D., Goodby J., Gray G.W., Spiess H.W. and Vill V (Eds.), 1999, Physical Properties of Liquid Crystals, Wiley-VCH, Veinheim. 17. Stegemeyer H. (Ed.), 1994, Liquid Crystals, Steinkopff, Darmstadt and Springer, NY. 18. Buka A. (Ed.), 1993, Modern Topics in Liquid Crystals. From Neutron Scattering to Ferroelectricity, World Scientific, Singapore. 19. Dierking I., 2003. Texture of Liquid Crystals, Wiley-VCH, Weinheim. 20. Luckhurst G.R. and Gray G.W. (Eds.), 1979, The Molecular Physics of Liquid Crystals, Academic Press, London. 21. de Gennes P.G. and Prost J., 1993, The Physics of Liquid Crystals, 2nd edition, Clarendon Press, Oxford. 22. Gray G.W. and Goodby J.W., 1984, Smectic Liquid Crystals. Textures and Structures, Leonard Hill, Glasgow. 23. Martellucci S. and Chester A.N. (Eds.), 1992, Phase Transitions in Liquid Crystals, NATO ASI Series, Vol.B290, Plenum Press, NY. 24. Luckhurst G.R. and Veracini C.A. (Eds.), 1994. The Molecular Dynamics of Liquid Crystals, NATO ASI Series, Vol.C431, Kluwer, Dordrecht. 25. Priestley E.B., Wojtowicz P.J. and Sheng P. (Eds.), 1975, Introduction to Liquid Crystals, Plenum Press, NY. 26. Lagerwall S.T., 1999, Ferroelectric and Antiferroelectric Liquid Crystals, Wiley-VCH, Weinheim. 27. Baus M., Rull L.F. and Ryckaert J.P. (Eds.), 1995, Observation, Prediction and Simulation of Phase Traansitions in Complex Fluids, Kluwer, Dordrecht. 28. Anisimov M.A., 1991, Critical Phenomena in Liquids and Liquid Crystals, Gordon & Breach, Philadelphia 29. Vertogen G. and de Jeu W.H., 1986, Thermotropic Liquid Crystals, Fundamentals, Springer, Berlin 30. de Jeu W.H., 1980, Physical Properties of Liquid Crystalline Materials, Gordon & Breach, NY 31. Helfrich W. and Heppke G., (Eds.), 1980, Liquid Crystals of One and Two Dimensional Order, Springer, Berlin. 32. Goodby J.W., Blinc R., Clark N.A., Lagerwall S.T., Osipov M.A., Pikin S.A., Sakurai T., Yoshino K. and }eka B., 1991, Ferroelectric Liquid Crystals. Principles, Properties and Applications, Series: Ferroelectricity and Related Phenomena, Volume 7. Gordon and Breach, Philadelphia. 33. Pikin S.A., 1991, Structural Transformations in Liquid Crystals, Gordon and Breach, NY. 34. Haberlandt R., Michel D., Poppel A. and Stannarius R., 2005, Molecules in interaction with surfaces and interfaces, Springer NY. 35. Crawford G.P. and }umer S., (Eds), Liquid Crystals in Complex Geometries, 1996, Taylor & Francis, London. 36. Muaevic I., Blinc R. and }eka B., 2000, The Physics of Ferroelectric and Antiferroelectric Liquid Crystals, World Scientific, Singapore. 37. Haase W. and Wróbel S. (Eds.), 2003, Relaxation Phenomena. Liquid Crystals, Magnetic Systems, Polymers, High-TC Superconductors, Metallic Glasses., Springer, NY. 38. Kresse H., 1983, in: Advances in Liquid Crystals, Vol.6, Brown G.H. (ed.), Academic Press, NY. 39. Coffey W.T. and Kalmykov Y.P. 2000, Adv.Chem.Phys. 111, 487. 40. de Jeu W.H., 1978, in: Solid State Physics, Supplement 14. Liebert L. (ed.), Academic Press. 41. Rzoska S.J. and Zhelezny V.P., (Eds), 2004, Nonlinear Dielectric Phenomena in Complex Liquids, Kluwer, Dordrecht. 42. Urban S. and Wuerflinger A., 1979, Adv.Chem.Phys., 98, 143. 43. Kresse H., 1982, Fortschrifte der Physik, 80, 507. 44. Urban S., 2001, in: Physical Properties of Liquid Crystals: Nematics, Dunmur D., Fukuda A. and Luckhurst G. (Eds.), Inspec, London, p.267. 45. Blinov L.M. and Chigrinov V.G., 1994, Electrooptic Effects in Liquid Crystal Materials, Springer, NY. 46. Meier G. and Saupe A., 1966, in: Liquid Crystals, Brown G.H., Dines G.J. and Labes M.M. (Eds.), Gordon and Breach, Philadelphia. 47. Kresse H., 1998, in: Handbook of Liquid Crystals, Demus D., Goodby J., Gray G.W., Spiess H.W. and Vill V. (Eds.), Vol.2, Wiley-VCH, Veinheim. 48. Dunmur D and Toriyama K., 1998, in: Handbook of Liquid Crystals, Demus D., Goodby J., Gray G.W., Spiess H.W. and Vill V. (Eds.), Vol. 1, Wiley-VCH, Veinheim. 49. Vill V., 2006, LiqCryst 4.6. Data Base, Fujitsu. 50. Byron M. et al. 2001, Pure Appl.Chem., 73, 845.