Author: Nicolas Hadjisavvas
Publisher: Springer Science & Business Media
ISBN: 0387233938
Category : Mathematics
Languages : en
Pages : 684
Book Description
Studies in generalized convexity and generalized monotonicity have significantly increased during the last two decades. Researchers with very diverse backgrounds such as mathematical programming, optimization theory, convex analysis, nonlinear analysis, nonsmooth analysis, linear algebra, probability theory, variational inequalities, game theory, economic theory, engineering, management science, equilibrium analysis, for example are attracted to this fast growing field of study. Such enormous research activity is partially due to the discovery of a rich, elegant and deep theory which provides a basis for interesting existing and potential applications in different disciplines. The handbook offers an advanced and broad overview of the current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity.
Handbook of Generalized Convexity and Generalized Monotonicity
Author: Nicolas Hadjisavvas
Publisher: Springer Science & Business Media
ISBN: 0387233938
Category : Mathematics
Languages : en
Pages : 684
Book Description
Studies in generalized convexity and generalized monotonicity have significantly increased during the last two decades. Researchers with very diverse backgrounds such as mathematical programming, optimization theory, convex analysis, nonlinear analysis, nonsmooth analysis, linear algebra, probability theory, variational inequalities, game theory, economic theory, engineering, management science, equilibrium analysis, for example are attracted to this fast growing field of study. Such enormous research activity is partially due to the discovery of a rich, elegant and deep theory which provides a basis for interesting existing and potential applications in different disciplines. The handbook offers an advanced and broad overview of the current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity.
Publisher: Springer Science & Business Media
ISBN: 0387233938
Category : Mathematics
Languages : en
Pages : 684
Book Description
Studies in generalized convexity and generalized monotonicity have significantly increased during the last two decades. Researchers with very diverse backgrounds such as mathematical programming, optimization theory, convex analysis, nonlinear analysis, nonsmooth analysis, linear algebra, probability theory, variational inequalities, game theory, economic theory, engineering, management science, equilibrium analysis, for example are attracted to this fast growing field of study. Such enormous research activity is partially due to the discovery of a rich, elegant and deep theory which provides a basis for interesting existing and potential applications in different disciplines. The handbook offers an advanced and broad overview of the current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity.
Generalized Convexity and Optimization
Author: Alberto Cambini
Publisher: Springer Science & Business Media
ISBN: 3540708766
Category : Mathematics
Languages : en
Pages : 252
Book Description
The authors have written a rigorous yet elementary and self-contained book to present, in a unified framework, generalized convex functions. The book also includes numerous exercises and two appendices which list the findings consulted.
Publisher: Springer Science & Business Media
ISBN: 3540708766
Category : Mathematics
Languages : en
Pages : 252
Book Description
The authors have written a rigorous yet elementary and self-contained book to present, in a unified framework, generalized convex functions. The book also includes numerous exercises and two appendices which list the findings consulted.
Generalized Convexity
Author: Sandor Komlosi
Publisher: Springer Science & Business Media
ISBN: 3642468020
Category : Business & Economics
Languages : en
Pages : 406
Book Description
Generalizations of the classical concept of a convex function have been proposed in various fields such as economics, management science, engineering, statistics and applied sciences during the second half of this century. In addition to new results in more established areas of generalized convexity, this book presents several important developments in recently emerging areas. Also, a number of interesting applications are reported.
Publisher: Springer Science & Business Media
ISBN: 3642468020
Category : Business & Economics
Languages : en
Pages : 406
Book Description
Generalizations of the classical concept of a convex function have been proposed in various fields such as economics, management science, engineering, statistics and applied sciences during the second half of this century. In addition to new results in more established areas of generalized convexity, this book presents several important developments in recently emerging areas. Also, a number of interesting applications are reported.
Generalized Convexity and Related Topics
Author: Igor V. Konnov
Publisher: Springer Science & Business Media
ISBN: 3540370072
Category : Business & Economics
Languages : en
Pages : 465
Book Description
The book contains invited papers by well-known experts on a wide range of topics (economics, variational analysis, probability etc.) closely related to convexity and generalized convexity, and refereed contributions of specialists from the world on current research on generalized convexity and applications, in particular, to optimization, economics and operations research.
Publisher: Springer Science & Business Media
ISBN: 3540370072
Category : Business & Economics
Languages : en
Pages : 465
Book Description
The book contains invited papers by well-known experts on a wide range of topics (economics, variational analysis, probability etc.) closely related to convexity and generalized convexity, and refereed contributions of specialists from the world on current research on generalized convexity and applications, in particular, to optimization, economics and operations research.
Generalized Concavity
Author: Mordecai Avriel
Publisher: SIAM
ISBN: 0898718961
Category : Mathematics
Languages : en
Pages : 342
Book Description
Originally published: New York: Plenum Press, 1988.
Publisher: SIAM
ISBN: 0898718961
Category : Mathematics
Languages : en
Pages : 342
Book Description
Originally published: New York: Plenum Press, 1988.
Topics in Nonconvex Optimization
Author: Shashi K. Mishra
Publisher: Springer Science & Business Media
ISBN: 1441996400
Category : Business & Economics
Languages : en
Pages : 276
Book Description
Nonconvex Optimization is a multi-disciplinary research field that deals with the characterization and computation of local/global minima/maxima of nonlinear, nonconvex, nonsmooth, discrete and continuous functions. Nonconvex optimization problems are frequently encountered in modeling real world systems for a very broad range of applications including engineering, mathematical economics, management science, financial engineering, and social science. This contributed volume consists of selected contributions from the Advanced Training Programme on Nonconvex Optimization and Its Applications held at Banaras Hindu University in March 2009. It aims to bring together new concepts, theoretical developments, and applications from these researchers. Both theoretical and applied articles are contained in this volume which adds to the state of the art research in this field. Topics in Nonconvex Optimization is suitable for advanced graduate students and researchers in this area.
Publisher: Springer Science & Business Media
ISBN: 1441996400
Category : Business & Economics
Languages : en
Pages : 276
Book Description
Nonconvex Optimization is a multi-disciplinary research field that deals with the characterization and computation of local/global minima/maxima of nonlinear, nonconvex, nonsmooth, discrete and continuous functions. Nonconvex optimization problems are frequently encountered in modeling real world systems for a very broad range of applications including engineering, mathematical economics, management science, financial engineering, and social science. This contributed volume consists of selected contributions from the Advanced Training Programme on Nonconvex Optimization and Its Applications held at Banaras Hindu University in March 2009. It aims to bring together new concepts, theoretical developments, and applications from these researchers. Both theoretical and applied articles are contained in this volume which adds to the state of the art research in this field. Topics in Nonconvex Optimization is suitable for advanced graduate students and researchers in this area.
Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization
Author: Qamrul Hasan Ansari
Publisher: CRC Press
ISBN: 1439868212
Category : Business & Economics
Languages : en
Pages : 294
Book Description
Until now, no book addressed convexity, monotonicity, and variational inequalities together. Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization covers all three topics, including new variational inequality problems defined by a bifunction.The first part of the book focuses on generalized convexity and generalized
Publisher: CRC Press
ISBN: 1439868212
Category : Business & Economics
Languages : en
Pages : 294
Book Description
Until now, no book addressed convexity, monotonicity, and variational inequalities together. Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization covers all three topics, including new variational inequality problems defined by a bifunction.The first part of the book focuses on generalized convexity and generalized
Convexity from the Geometric Point of View
Author: Vitor Balestro
Publisher: Springer Nature
ISBN: 3031505077
Category :
Languages : en
Pages : 1195
Book Description
Publisher: Springer Nature
ISBN: 3031505077
Category :
Languages : en
Pages : 1195
Book Description
Generalized Convexity, Generalized Monotonicity: Recent Results
Author: Jean-Pierre Crouzeix
Publisher: Springer Science & Business Media
ISBN: 1461333415
Category : Mathematics
Languages : en
Pages : 469
Book Description
A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems.
Publisher: Springer Science & Business Media
ISBN: 1461333415
Category : Mathematics
Languages : en
Pages : 469
Book Description
A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems.
Generalized Convexity and Generalized Monotonicity
Author: Nicolas Hadjisavvas
Publisher: Springer Science & Business Media
ISBN: 3642566456
Category : Mathematics
Languages : en
Pages : 422
Book Description
Various generalizations of convex functions have been introduced in areas such as mathematical programming, economics, management science, engineering, stochastics and applied sciences, for example. Such functions preserve one or more properties of convex functions and give rise to models which are more adaptable to real-world situations than convex models. Similarly, generalizations of monotone maps have been studied recently. A growing literature of this interdisciplinary field has appeared, and a large number of international meetings are entirely devoted or include clusters on generalized convexity and generalized monotonicity. The present book contains a selection of refereed papers presented at the 6th International Symposium on Generalized Convexity/Monotonicity, and aims to review the latest developments in the field.
Publisher: Springer Science & Business Media
ISBN: 3642566456
Category : Mathematics
Languages : en
Pages : 422
Book Description
Various generalizations of convex functions have been introduced in areas such as mathematical programming, economics, management science, engineering, stochastics and applied sciences, for example. Such functions preserve one or more properties of convex functions and give rise to models which are more adaptable to real-world situations than convex models. Similarly, generalizations of monotone maps have been studied recently. A growing literature of this interdisciplinary field has appeared, and a large number of international meetings are entirely devoted or include clusters on generalized convexity and generalized monotonicity. The present book contains a selection of refereed papers presented at the 6th International Symposium on Generalized Convexity/Monotonicity, and aims to review the latest developments in the field.