Author: Kirill V. Rozhdestvensky
Publisher: Springer Science & Business Media
ISBN: 3662042401
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This book is dedicated to the memory of a distinguished Russian engineer, Rostislav E. Alexeyev, who was the first in the world to develop the largest ground effect machine - Ekranoplan. One of Alexeyev's design concepts with the aerodynamic configuration of a jlying wing can be seen on the front page. The book presents a description of a mathematical model of flow past a lifting system, performing steady and unsteady motions in close proximity to the underlying solid surface (ground). This case is interesting for practical purposes because both the aerodynamic and the economic efficiency of the system near the ground are most pronounced. Use of the method of matched asymptotic expansions enables closed form solutions for the aerodynamic characteristics of the wings-in-ground effect. These can be used for design, identification, and processing of experimental data in the course of developing ground effect vehicles. The term extreme ground effect, widely used through out the book, is associated with very small relative ground clearances of the order of 10% or less. The theory of a lifting surface, moving in immediate proximity to the ground, represents one of the few limiting cases that can be treated analytically. The author would like to acknowledge that this work has been influenced by the ideas of Professor Sheila E. Widnall, who was the first to apply the matched asymptotics techniques to treat lifting flows with the ground effect. Saint Petersburg, Russia February 2000 Kirill V. Rozhdestvensky Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aerodynamics of a Lifting System in Extreme Ground Effect
Author: Kirill V. Rozhdestvensky
Publisher: Springer Science & Business Media
ISBN: 3662042401
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This book is dedicated to the memory of a distinguished Russian engineer, Rostislav E. Alexeyev, who was the first in the world to develop the largest ground effect machine - Ekranoplan. One of Alexeyev's design concepts with the aerodynamic configuration of a jlying wing can be seen on the front page. The book presents a description of a mathematical model of flow past a lifting system, performing steady and unsteady motions in close proximity to the underlying solid surface (ground). This case is interesting for practical purposes because both the aerodynamic and the economic efficiency of the system near the ground are most pronounced. Use of the method of matched asymptotic expansions enables closed form solutions for the aerodynamic characteristics of the wings-in-ground effect. These can be used for design, identification, and processing of experimental data in the course of developing ground effect vehicles. The term extreme ground effect, widely used through out the book, is associated with very small relative ground clearances of the order of 10% or less. The theory of a lifting surface, moving in immediate proximity to the ground, represents one of the few limiting cases that can be treated analytically. The author would like to acknowledge that this work has been influenced by the ideas of Professor Sheila E. Widnall, who was the first to apply the matched asymptotics techniques to treat lifting flows with the ground effect. Saint Petersburg, Russia February 2000 Kirill V. Rozhdestvensky Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Publisher: Springer Science & Business Media
ISBN: 3662042401
Category : Technology & Engineering
Languages : en
Pages : 358
Book Description
This book is dedicated to the memory of a distinguished Russian engineer, Rostislav E. Alexeyev, who was the first in the world to develop the largest ground effect machine - Ekranoplan. One of Alexeyev's design concepts with the aerodynamic configuration of a jlying wing can be seen on the front page. The book presents a description of a mathematical model of flow past a lifting system, performing steady and unsteady motions in close proximity to the underlying solid surface (ground). This case is interesting for practical purposes because both the aerodynamic and the economic efficiency of the system near the ground are most pronounced. Use of the method of matched asymptotic expansions enables closed form solutions for the aerodynamic characteristics of the wings-in-ground effect. These can be used for design, identification, and processing of experimental data in the course of developing ground effect vehicles. The term extreme ground effect, widely used through out the book, is associated with very small relative ground clearances of the order of 10% or less. The theory of a lifting surface, moving in immediate proximity to the ground, represents one of the few limiting cases that can be treated analytically. The author would like to acknowledge that this work has been influenced by the ideas of Professor Sheila E. Widnall, who was the first to apply the matched asymptotics techniques to treat lifting flows with the ground effect. Saint Petersburg, Russia February 2000 Kirill V. Rozhdestvensky Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WIG Craft and Ekranoplan
Author: Liang Yun
Publisher: Springer Science & Business Media
ISBN: 144190042X
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
In the last half-century, high-speed water transportation has developed rapidly. Novel high-performance marine vehicles, such as the air cushion vehicle (ACV), surface effect ship (SES), high-speed monohull craft (MHC), catamaran (CAT), hydrofoil craft (HYC), wave-piercing craft (WPC) and small water area twin hull craft (SWATH) have all developed as concepts, achieving varying degrees of commercial and military success. Prototype ACV and SES have achieved speeds of 100 knots in at calm con- tions; however, the normal cruising speed for commercial operations has remained around 35–50 knots. This is partly due to increased drag in an average coastal s- way where such craft operate services and partly due to limitations of the propulsion systems for such craft. Water jets and water propellers face limitations due to c- itation at high speed, for example. SWATH are designed for reduced motions in a seaway, but the hull form is not a low drag form suitable for high-speed operation. So that seems to lead to a problem – maintain water contact and either water propulsion systems run out of power or craft motions and speed loss are a problem in higher seastates. The only way to higher speed would appear to be to disconnect completely from the water surface. You, the reader, might respond with a question about racing hydroplanes, which manage speeds of above 200 kph. Yes, true, but the power-to-weight ratio is extremely high on such racing machines and not economic if translated into a useful commercial vessel.
Publisher: Springer Science & Business Media
ISBN: 144190042X
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
In the last half-century, high-speed water transportation has developed rapidly. Novel high-performance marine vehicles, such as the air cushion vehicle (ACV), surface effect ship (SES), high-speed monohull craft (MHC), catamaran (CAT), hydrofoil craft (HYC), wave-piercing craft (WPC) and small water area twin hull craft (SWATH) have all developed as concepts, achieving varying degrees of commercial and military success. Prototype ACV and SES have achieved speeds of 100 knots in at calm con- tions; however, the normal cruising speed for commercial operations has remained around 35–50 knots. This is partly due to increased drag in an average coastal s- way where such craft operate services and partly due to limitations of the propulsion systems for such craft. Water jets and water propellers face limitations due to c- itation at high speed, for example. SWATH are designed for reduced motions in a seaway, but the hull form is not a low drag form suitable for high-speed operation. So that seems to lead to a problem – maintain water contact and either water propulsion systems run out of power or craft motions and speed loss are a problem in higher seastates. The only way to higher speed would appear to be to disconnect completely from the water surface. You, the reader, might respond with a question about racing hydroplanes, which manage speeds of above 200 kph. Yes, true, but the power-to-weight ratio is extremely high on such racing machines and not economic if translated into a useful commercial vessel.
Ground Effect Machine Research and Development in the United States
Author: Harvey R. Chaplin
Publisher:
ISBN:
Category : Ground-effect machines
Languages : en
Pages : 54
Book Description
Publisher:
ISBN:
Category : Ground-effect machines
Languages : en
Pages : 54
Book Description
Report - Naval Ship Research and Development Center
Author: David W. Taylor Naval Ship Research and Development Center
Publisher:
ISBN:
Category : Shipbuilding
Languages : en
Pages : 318
Book Description
Publisher:
ISBN:
Category : Shipbuilding
Languages : en
Pages : 318
Book Description
Aerodynamics of a Lifting System in Extreme Ground Effect
Author: Kirill V. Rozhdestvensky
Publisher: Springer Science & Business Media
ISBN: 9783540662778
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
This book is dedicated to the memory of a distinguished Russian engineer, Rostislav E. Alexeyev, who was the first in the world to develop the largest ground effect machine - Ekranoplan. One of Alexeyev's design concepts with the aerodynamic configuration of a jlying wing can be seen on the front page. The book presents a description of a mathematical model of flow past a lifting system, performing steady and unsteady motions in close proximity to the underlying solid surface (ground). This case is interesting for practical purposes because both the aerodynamic and the economic efficiency of the system near the ground are most pronounced. Use of the method of matched asymptotic expansions enables closed form solutions for the aerodynamic characteristics of the wings-in-ground effect. These can be used for design, identification, and processing of experimental data in the course of developing ground effect vehicles. The term extreme ground effect, widely used through out the book, is associated with very small relative ground clearances of the order of 10% or less. The theory of a lifting surface, moving in immediate proximity to the ground, represents one of the few limiting cases that can be treated analytically. The author would like to acknowledge that this work has been influenced by the ideas of Professor Sheila E. Widnall, who was the first to apply the matched asymptotics techniques to treat lifting flows with the ground effect. Saint Petersburg, Russia February 2000 Kirill V. Rozhdestvensky Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Publisher: Springer Science & Business Media
ISBN: 9783540662778
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
This book is dedicated to the memory of a distinguished Russian engineer, Rostislav E. Alexeyev, who was the first in the world to develop the largest ground effect machine - Ekranoplan. One of Alexeyev's design concepts with the aerodynamic configuration of a jlying wing can be seen on the front page. The book presents a description of a mathematical model of flow past a lifting system, performing steady and unsteady motions in close proximity to the underlying solid surface (ground). This case is interesting for practical purposes because both the aerodynamic and the economic efficiency of the system near the ground are most pronounced. Use of the method of matched asymptotic expansions enables closed form solutions for the aerodynamic characteristics of the wings-in-ground effect. These can be used for design, identification, and processing of experimental data in the course of developing ground effect vehicles. The term extreme ground effect, widely used through out the book, is associated with very small relative ground clearances of the order of 10% or less. The theory of a lifting surface, moving in immediate proximity to the ground, represents one of the few limiting cases that can be treated analytically. The author would like to acknowledge that this work has been influenced by the ideas of Professor Sheila E. Widnall, who was the first to apply the matched asymptotics techniques to treat lifting flows with the ground effect. Saint Petersburg, Russia February 2000 Kirill V. Rozhdestvensky Contents 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NASA Thesaurus
Soviet and Russian Ekranoplans
Author: Sergey Komissarov
Publisher:
ISBN: 9781910809365
Category : Wing-in-ground-effect machines
Languages : en
Pages : 0
Book Description
One of the most unusual strands in aviation history has been the development of wing-in-ground effect (WIG) vehicles, or as they are more commonly known by their Russian name, Ekranploans. Beginning with a brief outline of the concept from the theory to viable technical solutions, this new, expanded edition of Soviet and Russian Ekranploans gives a historical survey of the development of WIG research and construction in Russia. A large part of the book focuses on a type-by-type description of specific designs of ekranoplans developed in the Soviet Union and Russia in the course of half a century. Special emphasis is given to the activities of Rostislav Alekseyev, who has played an enormous role in the development of this new technology. Ekranoplans developed by several other major design bureaus, notably those led by Sukhoi, Bartini and Beriyev, are also considered. Economic and political transformations following the break-up of the Soviet Union led to the emergence of privately-owned design bureaus and firms that are now pursuing the development of WIG aircraft in Russia, given the lack of interest on the part of the military and the state in this branch of transport technology. This new edition has been fully updated to include unpublished photos and diagrams and examples of similar technology being developed in countries outside of Russian, including the USA, Germany and China. This is a welcome update to a book regarded as the definitive work on these unusual and exciting aircraft.
Publisher:
ISBN: 9781910809365
Category : Wing-in-ground-effect machines
Languages : en
Pages : 0
Book Description
One of the most unusual strands in aviation history has been the development of wing-in-ground effect (WIG) vehicles, or as they are more commonly known by their Russian name, Ekranploans. Beginning with a brief outline of the concept from the theory to viable technical solutions, this new, expanded edition of Soviet and Russian Ekranploans gives a historical survey of the development of WIG research and construction in Russia. A large part of the book focuses on a type-by-type description of specific designs of ekranoplans developed in the Soviet Union and Russia in the course of half a century. Special emphasis is given to the activities of Rostislav Alekseyev, who has played an enormous role in the development of this new technology. Ekranoplans developed by several other major design bureaus, notably those led by Sukhoi, Bartini and Beriyev, are also considered. Economic and political transformations following the break-up of the Soviet Union led to the emergence of privately-owned design bureaus and firms that are now pursuing the development of WIG aircraft in Russia, given the lack of interest on the part of the military and the state in this branch of transport technology. This new edition has been fully updated to include unpublished photos and diagrams and examples of similar technology being developed in countries outside of Russian, including the USA, Germany and China. This is a welcome update to a book regarded as the definitive work on these unusual and exciting aircraft.
Scientific and Technical Aerospace Reports
A The Application of Modular/sectional Structures to Ground Effect Machines
Author: Booz-Allen Applied Research, Inc., Bethesda, Md
Publisher:
ISBN:
Category : Ground-effect machines
Languages : en
Pages : 252
Book Description
Publisher:
ISBN:
Category : Ground-effect machines
Languages : en
Pages : 252
Book Description
Aerodynamics of V/STOL Flight
Author: Barnes Warnock McCormick
Publisher: Courier Corporation
ISBN: 9780486404608
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
An extremely practical overview of V/STOL (vertical/short takeoff and landing) aerodynamics, this volume offers a presentation of general theoretical and applied aerodynamic principles, covering propeller and helicopter rotor theory for both the static and forward flight cases. Both a text for students and a reference for professionals, the book can be used for advanced undergraduate or graduate courses. Numerous detailed figures, plus exercises. 1967 edition. Preface. Appendix. Index.
Publisher: Courier Corporation
ISBN: 9780486404608
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
An extremely practical overview of V/STOL (vertical/short takeoff and landing) aerodynamics, this volume offers a presentation of general theoretical and applied aerodynamic principles, covering propeller and helicopter rotor theory for both the static and forward flight cases. Both a text for students and a reference for professionals, the book can be used for advanced undergraduate or graduate courses. Numerous detailed figures, plus exercises. 1967 edition. Preface. Appendix. Index.