Author: David A. Bader
Publisher: American Mathematical Soc.
ISBN: 0821890387
Category : Mathematics
Languages : en
Pages : 258
Book Description
Graph partitioning and graph clustering are ubiquitous subtasks in many applications where graphs play an important role. Generally speaking, both techniques aim at the identification of vertex subsets with many internal and few external edges. To name only a few, problems addressed by graph partitioning and graph clustering algorithms are: What are the communities within an (online) social network? How do I speed up a numerical simulation by mapping it efficiently onto a parallel computer? How must components be organized on a computer chip such that they can communicate efficiently with each other? What are the segments of a digital image? Which functions are certain genes (most likely) responsible for? The 10th DIMACS Implementation Challenge Workshop was devoted to determining realistic performance of algorithms where worst case analysis is overly pessimistic and probabilistic models are too unrealistic. Articles in the volume describe and analyze various experimental data with the goal of getting insight into realistic algorithm performance in situations where analysis fails.
Graph Partitioning and Graph Clustering
Author: David A. Bader
Publisher: American Mathematical Soc.
ISBN: 0821890387
Category : Mathematics
Languages : en
Pages : 258
Book Description
Graph partitioning and graph clustering are ubiquitous subtasks in many applications where graphs play an important role. Generally speaking, both techniques aim at the identification of vertex subsets with many internal and few external edges. To name only a few, problems addressed by graph partitioning and graph clustering algorithms are: What are the communities within an (online) social network? How do I speed up a numerical simulation by mapping it efficiently onto a parallel computer? How must components be organized on a computer chip such that they can communicate efficiently with each other? What are the segments of a digital image? Which functions are certain genes (most likely) responsible for? The 10th DIMACS Implementation Challenge Workshop was devoted to determining realistic performance of algorithms where worst case analysis is overly pessimistic and probabilistic models are too unrealistic. Articles in the volume describe and analyze various experimental data with the goal of getting insight into realistic algorithm performance in situations where analysis fails.
Publisher: American Mathematical Soc.
ISBN: 0821890387
Category : Mathematics
Languages : en
Pages : 258
Book Description
Graph partitioning and graph clustering are ubiquitous subtasks in many applications where graphs play an important role. Generally speaking, both techniques aim at the identification of vertex subsets with many internal and few external edges. To name only a few, problems addressed by graph partitioning and graph clustering algorithms are: What are the communities within an (online) social network? How do I speed up a numerical simulation by mapping it efficiently onto a parallel computer? How must components be organized on a computer chip such that they can communicate efficiently with each other? What are the segments of a digital image? Which functions are certain genes (most likely) responsible for? The 10th DIMACS Implementation Challenge Workshop was devoted to determining realistic performance of algorithms where worst case analysis is overly pessimistic and probabilistic models are too unrealistic. Articles in the volume describe and analyze various experimental data with the goal of getting insight into realistic algorithm performance in situations where analysis fails.
Algebraic Graph Algorithms
Author: K. Erciyes
Publisher: Springer Nature
ISBN: 3030878864
Category : Computers
Languages : en
Pages : 229
Book Description
This textbook discusses the design and implementation of basic algebraic graph algorithms, and algebraic graph algorithms for complex networks, employing matroids whenever possible. The text describes the design of a simple parallel matrix algorithm kernel that can be used for parallel processing of algebraic graph algorithms. Example code is presented in pseudocode, together with case studies in Python and MPI. The text assumes readers have a background in graph theory and/or graph algorithms.
Publisher: Springer Nature
ISBN: 3030878864
Category : Computers
Languages : en
Pages : 229
Book Description
This textbook discusses the design and implementation of basic algebraic graph algorithms, and algebraic graph algorithms for complex networks, employing matroids whenever possible. The text describes the design of a simple parallel matrix algorithm kernel that can be used for parallel processing of algebraic graph algorithms. Example code is presented in pseudocode, together with case studies in Python and MPI. The text assumes readers have a background in graph theory and/or graph algorithms.
Managing and Mining Graph Data
Author: Charu C. Aggarwal
Publisher: Springer Science & Business Media
ISBN: 1441960457
Category : Computers
Languages : en
Pages : 623
Book Description
Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.
Publisher: Springer Science & Business Media
ISBN: 1441960457
Category : Computers
Languages : en
Pages : 623
Book Description
Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.
Encyclopedia of Machine Learning
Author: Claude Sammut
Publisher: Springer Science & Business Media
ISBN: 0387307680
Category : Computers
Languages : en
Pages : 1061
Book Description
This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.
Publisher: Springer Science & Business Media
ISBN: 0387307680
Category : Computers
Languages : en
Pages : 1061
Book Description
This comprehensive encyclopedia, in A-Z format, provides easy access to relevant information for those seeking entry into any aspect within the broad field of Machine Learning. Most of the entries in this preeminent work include useful literature references.
Knowledge Discovery in Databases: PKDD 2004
Author: Jean-Francois Boulicaut
Publisher: Springer Science & Business Media
ISBN: 3540231080
Category : Computers
Languages : en
Pages : 578
Book Description
This book constitutes the refereed proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2004, held in Pisa, Italy, in September 2004 jointly with ECML 2004. The 39 revised full papers and 9 revised short papers presented together with abstracts of 5 invited talks were carefully reviewed and selected from 194 papers submitted to PKDD and 107 papers submitted to both, PKDD and ECML. The papers present a wealth of new results in knowledge discovery in databases and address all current issues in the area.
Publisher: Springer Science & Business Media
ISBN: 3540231080
Category : Computers
Languages : en
Pages : 578
Book Description
This book constitutes the refereed proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2004, held in Pisa, Italy, in September 2004 jointly with ECML 2004. The 39 revised full papers and 9 revised short papers presented together with abstracts of 5 invited talks were carefully reviewed and selected from 194 papers submitted to PKDD and 107 papers submitted to both, PKDD and ECML. The papers present a wealth of new results in knowledge discovery in databases and address all current issues in the area.
Finding Out About
Author: Richard K. Belew
Publisher: Cambridge University Press
ISBN: 9780521630283
Category : Computers
Languages : en
Pages : 388
Book Description
Explains how to build useful tools for searching collections of text and other media.
Publisher: Cambridge University Press
ISBN: 9780521630283
Category : Computers
Languages : en
Pages : 388
Book Description
Explains how to build useful tools for searching collections of text and other media.
Algorithm Engineering
Author: Lasse Kliemann
Publisher: Springer
ISBN: 3319494872
Category : Computers
Languages : en
Pages : 428
Book Description
Algorithm Engineering is a methodology for algorithmic research that combines theory with implementation and experimentation in order to obtain better algorithms with high practical impact. Traditionally, the study of algorithms was dominated by mathematical (worst-case) analysis. In Algorithm Engineering, algorithms are also implemented and experiments conducted in a systematic way, sometimes resembling the experimentation processes known from fields such as biology, chemistry, or physics. This helps in counteracting an otherwise growing gap between theory and practice.
Publisher: Springer
ISBN: 3319494872
Category : Computers
Languages : en
Pages : 428
Book Description
Algorithm Engineering is a methodology for algorithmic research that combines theory with implementation and experimentation in order to obtain better algorithms with high practical impact. Traditionally, the study of algorithms was dominated by mathematical (worst-case) analysis. In Algorithm Engineering, algorithms are also implemented and experiments conducted in a systematic way, sometimes resembling the experimentation processes known from fields such as biology, chemistry, or physics. This helps in counteracting an otherwise growing gap between theory and practice.
Advances in Network Clustering and Blockmodeling
Author: Patrick Doreian
Publisher: John Wiley & Sons
ISBN: 1119224705
Category : Mathematics
Languages : en
Pages : 425
Book Description
Provides an overview of the developments and advances in the field of network clustering and blockmodeling over the last 10 years This book offers an integrated treatment of network clustering and blockmodeling, covering all of the newest approaches and methods that have been developed over the last decade. Presented in a comprehensive manner, it offers the foundations for understanding network structures and processes, and features a wide variety of new techniques addressing issues that occur during the partitioning of networks across multiple disciplines such as community detection, blockmodeling of valued networks, role assignment, and stochastic blockmodeling. Written by a team of international experts in the field, Advances in Network Clustering and Blockmodeling offers a plethora of diverse perspectives covering topics such as: bibliometric analyses of the network clustering literature; clustering approaches to networks; label propagation for clustering; and treating missing network data before partitioning. It also examines the partitioning of signed networks, multimode networks, and linked networks. A chapter on structured networks and coarsegrained descriptions is presented, along with another on scientific coauthorship networks. The book finishes with a section covering conclusions and directions for future work. In addition, the editors provide numerous tables, figures, case studies, examples, datasets, and more. Offers a clear and insightful look at the state of the art in network clustering and blockmodeling Provides an excellent mix of mathematical rigor and practical application in a comprehensive manner Presents a suite of new methods, procedures, algorithms for partitioning networks, as well as new techniques for visualizing matrix arrays Features numerous examples throughout, enabling readers to gain a better understanding of research methods and to conduct their own research effectively Written by leading contributors in the field of spatial networks analysis Advances in Network Clustering and Blockmodeling is an ideal book for graduate and undergraduate students taking courses on network analysis or working with networks using real data. It will also benefit researchers and practitioners interested in network analysis.
Publisher: John Wiley & Sons
ISBN: 1119224705
Category : Mathematics
Languages : en
Pages : 425
Book Description
Provides an overview of the developments and advances in the field of network clustering and blockmodeling over the last 10 years This book offers an integrated treatment of network clustering and blockmodeling, covering all of the newest approaches and methods that have been developed over the last decade. Presented in a comprehensive manner, it offers the foundations for understanding network structures and processes, and features a wide variety of new techniques addressing issues that occur during the partitioning of networks across multiple disciplines such as community detection, blockmodeling of valued networks, role assignment, and stochastic blockmodeling. Written by a team of international experts in the field, Advances in Network Clustering and Blockmodeling offers a plethora of diverse perspectives covering topics such as: bibliometric analyses of the network clustering literature; clustering approaches to networks; label propagation for clustering; and treating missing network data before partitioning. It also examines the partitioning of signed networks, multimode networks, and linked networks. A chapter on structured networks and coarsegrained descriptions is presented, along with another on scientific coauthorship networks. The book finishes with a section covering conclusions and directions for future work. In addition, the editors provide numerous tables, figures, case studies, examples, datasets, and more. Offers a clear and insightful look at the state of the art in network clustering and blockmodeling Provides an excellent mix of mathematical rigor and practical application in a comprehensive manner Presents a suite of new methods, procedures, algorithms for partitioning networks, as well as new techniques for visualizing matrix arrays Features numerous examples throughout, enabling readers to gain a better understanding of research methods and to conduct their own research effectively Written by leading contributors in the field of spatial networks analysis Advances in Network Clustering and Blockmodeling is an ideal book for graduate and undergraduate students taking courses on network analysis or working with networks using real data. It will also benefit researchers and practitioners interested in network analysis.
Proceedings of the Fifth SIAM International Conference on Data Mining
Author: Hillol Kargupta
Publisher: SIAM
ISBN: 9780898715934
Category : Mathematics
Languages : en
Pages : 670
Book Description
The Fifth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. Advances in information technology and data collection methods have led to the availability of large data sets in commercial enterprises and in a wide variety of scientific and engineering disciplines. The field of data mining draws upon extensive work in areas such as statistics, machine learning, pattern recognition, databases, and high performance computing to discover interesting and previously unknown information in data. This conference results in data mining, including applications, algorithms, software, and systems.
Publisher: SIAM
ISBN: 9780898715934
Category : Mathematics
Languages : en
Pages : 670
Book Description
The Fifth SIAM International Conference on Data Mining continues the tradition of providing an open forum for the presentation and discussion of innovative algorithms as well as novel applications of data mining. Advances in information technology and data collection methods have led to the availability of large data sets in commercial enterprises and in a wide variety of scientific and engineering disciplines. The field of data mining draws upon extensive work in areas such as statistics, machine learning, pattern recognition, databases, and high performance computing to discover interesting and previously unknown information in data. This conference results in data mining, including applications, algorithms, software, and systems.
Graph-Based Clustering and Data Visualization Algorithms
Author: Ágnes Vathy-Fogarassy
Publisher: Springer Science & Business Media
ISBN: 1447151585
Category : Computers
Languages : en
Pages : 120
Book Description
This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.
Publisher: Springer Science & Business Media
ISBN: 1447151585
Category : Computers
Languages : en
Pages : 120
Book Description
This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.