GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator PDF full book. Access full book title GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator by . Download full books in PDF and EPUB format.

GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

GeV Electron Beams from a Laser-plasma Accelerator

GeV Electron Beams from a Laser-plasma Accelerator PDF Author: C. B. Schroeder
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
High-quality electron beams with up to 1 GeV energy havebeen generated by a laser-driven plasma-based accelerator by guiding a 40TW peak power laser pulse in a 3.3 cm long gas-filled capillary dischargewaveguide.

GeV Electron Beams from a Cm-scale Accelerator

GeV Electron Beams from a Cm-scale Accelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radio frequency based accelerators are limited to relatively low accelerating fields (10-50 MV/m) and hence require tens to hundreds of meters to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometers to generate particle energies of interest to the frontiers of high-energy physics. Laser wakefield accelerators (LWFA) in which particles are accelerated by the field of a plasma wave driven by an intense laser pulse produce electric fields several orders of magnitude stronger (10-100 GV/m) and so offer the potential of very compact devices. However, until now it has not been possible to maintain the required laser intensity, and hence acceleration, over the several centimeters needed to reach GeV energies. For this reason laser-driven accelerators have to date been limited to the 100 MeV scale. Contrary to predictions that PW-class lasers would be needed to reach GeV energies, here we demonstrate production of a high-quality electron beam with 1 GeV energy by channeling a 40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide. We anticipate that laser-plasma accelerators based on capillary discharge waveguides will have a major impact on the development of future femtosecond radiation sources such as x-ray free electron lasers and become a standard building block for next generation high-energy accelerators.

Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL.

Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Book Description
Laser wakefield acceleration experiments were carried out by using a hydrogen-filled capillary discharge waveguide. For a 15 mm long, 200 micrometer diameter capillary, quasi-monoenergetic e-beams up to 300 MeV were observed. By de-tuning discharge delay from optimum guiding performance, self-trapping was found to be stabilized. For a 33 mm long, 300 micrometer capillary, a parameter regime with high energy electron beams, up to 1 GeV, was found. In this regime, the electron beam peak energy was correlated with the amount of trapped electrons.

GeV Electron Beams from Cm-scale Channel Guided Laser Wakefieldaccelerator

GeV Electron Beams from Cm-scale Channel Guided Laser Wakefieldaccelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Laser-wakefield accelerators (LWFA) can produce electricfields of order 10-100 GV/m suitable for acceleration of electrons torelativistic energies. The wakefields are excited by a relativisticallyintense laser pulse propagating through a plasma and have a phasevelocity determined by the group velocity of the light pulse. Twoimportant effects that can limit the acceleration distanceand hence thenet energy gain obtained by an electron are diffraction of the drivelaser pulse and particle-wake dephasing. Diffraction of a focusedultra-short laser pulse can be overcome by using preformed plasmachannels. The dephasing limit can be increased by operating at a lowerplasma density, since this results in an increase in the laser groupvelocity. Here we present detailed results on the generation of GeV-classelectron beams using an intense femtosecond laser beamand a 3.3 cm longpreformed discharge-based plasma channel [W.P. Leemans et al., NaturePhysics 2, 696-699 (2006)]. The use of a discharge-based waveguidepermitted operation at an order ofmagnitude lower density and 15 timeslonger distance than in previous experiments that relied on laserpreformed plasma channels. Laser pulses with peak power ranging from10-50 TW were guided over more than 20 Rayleigh ranges and high-qualityelectron beams with energy up to 1 GeV were obtained by channelling a 40TW peak power laser pulse. The dependence of the electron beamcharacteristics on capillary properties, plasma density, and laserparameters are discussed.

Laser Guiding for GeV Laser-Plasma Accelerators

Laser Guiding for GeV Laser-Plasma Accelerators PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Guiding of relativistically intense laser beams in preformed plasma channels is discussed for development of GeV-class laser accelerators. Experiments using a channel guided laser wakefield accelerator (LWFA) at LBNL have demonstrated that near mono-energetic 100 MeV-class electron beams can be produced with a 10 TW laser system. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, is the key to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short term prospects for intense radiation sources based on laser-driven plasma accelerators.

GeV Electron Beams from a Centimeter-scale Laser-driven Plasmaaccelerator

GeV Electron Beams from a Centimeter-scale Laser-driven Plasmaaccelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Esults are presented on the generation ofquasi-monoenergeticelectron beams with energy up to 1GeV using a 40TWlaser and a 3.3 cm-long hydrogen-filled capillary discharge waveguide. Electron beams were not observed without a plasma channel, indicatingthat self-focusing alone could not be relied upon for effective guidingofthe laser pulse. Results are presented of the electronbeam spectra, andthe dependence of the reliability of producingelectron beams as afunction of laser and plasma parameters.

Control of Laser Plasma Based Accelerators Up to 1 GeV.

Control of Laser Plasma Based Accelerators Up to 1 GeV. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 181

Book Description
This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> ± 10 mrad) were realized by employing a slitless scheme. A scintillating screen (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 ?m diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 1018 W/cm2) over 3.3 centimeters of sufficiently low density (≃ 4.3 x 1018/cm3) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of ≃ 0.5 GeV by using a 225 ?m diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 1018W/cm2) were guided over 3.3 centimeters of low density (≃ 3.5 x 1018/cm3) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate experimental system, several thousands of shots were taken in a broad range of the laser and plasma parameters. An analysis program was developed to sort and select the data by specified parameters, and then to evaluate performance statistically. The analysis suggested that the generation of GeV-level beams comes from a highly unstable and regime. By having the plasma density slightly above the threshold density for self injection, (1) the longest dephasing length possible was provided, which led to the generation of high energy e-beams, and (2) the number of electrons injected into the wakefield was kept small, which led to the generation of high quality (low energy spread) e-beams by minimizing the beam loading effect on the wake. The analysis of the stable half-GeV beam regime showed the requirements for stable self injection and acceleration. A small change of discharge delay tdsc, and input energy Ein, significantly affected performance. The statistical analysis provided information for future optimization, and suggested possible schemes for improvement of the stability and higher quality beam generation. A CDG-LWFA is envisioned as a construction block for the next generation accelerator, enabling significant cost and size reductions.

Performance of Capillary Discharge Guided Laser Plasma Wakefieldaccelerator

Performance of Capillary Discharge Guided Laser Plasma Wakefieldaccelerator PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
A GeV-class laser-driven plasma-based wakefield acceleratorhas been realized at the Lawrence Berkeley National Laboratory (LBNL). The device consists of the 40TW high repetition rate Ti:sapphire LOASISlaser system at LBNL and a gas-filled capillary discharge waveguidedeveloped at Oxford University. The operation of the capillary dischargeguided laser plasma wakefield accelerator with a capillaryof 225 mu mdiameter and 33 mm in length was analyzed in detail. The input intensitydependence suggests that excessive self-injection causes increased beamloading leading to broadband lower energy electron beam generation. Thetrigger versus laser arrival timing dependence suggests that the plasmachannel parameters can be tuned to reduce beam divergence.

Energy Spread Reduction of Electron Beams Produced Via Laser Wakefield Acceleration

Energy Spread Reduction of Electron Beams Produced Via Laser Wakefield Acceleration PDF Author: Bradley Bolt Pollock
Publisher:
ISBN: 9781267331335
Category :
Languages : en
Pages : 87

Book Description
Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give>1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3x1018 cm−3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a limited, defined region. Using this technique a 460 MeV electron beam was produced with an energy spread of 5%. This technique is directly scalable to multi-GeV electron beam generation with sub-percent energy spreads.