Author: Jost-Hinrich Eschenburg
Publisher: Springer Nature
ISBN: 3658386401
Category : Mathematics
Languages : en
Pages : 168
Book Description
This book deals with the geometry of visual space in all its aspects. As in any branch of mathematics, the aim is to trace the hidden to the obvious; the peculiarity of geometry is that the obvious is sometimes literally before one's eyes.Starting from intuition, spatial concepts are embedded in the pre-existing mathematical framework of linear algebra and calculus. The path from visualization to mathematically exact language is itself the learning content of this book. This is intended to close an often lamented gap in understanding between descriptive preschool and school geometry and the abstract concepts of linear algebra and calculus. At the same time, descriptive geometric modes of argumentation are justified because their embedding in the strict mathematical language has been clarified. The concepts of geometry are of a very different nature; they denote, so to speak, different layers of geometric thinking: some arguments use only concepts such as point, straight line, and incidence, others require angles and distances, still others symmetry considerations. Each of these conceptual fields determines a separate subfield of geometry and a separate chapter of this book, with the exception of the last-mentioned conceptual field "symmetry", which runs through all the others: - Incidence: Projective geometry - Parallelism: Affine geometry - Angle: Conformal Geometry - Distance: Metric Geometry - Curvature: Differential Geometry - Angle as distance measure: Spherical and Hyperbolic Geometry - Symmetry: Mapping Geometry. The mathematical experience acquired in the visual space can be easily transferred to much more abstract situations with the help of the vector space notion. The generalizations beyond the visual dimension point in two directions: Extension of the number concept and transcending the three illustrative dimensions. This book is a translation of the original German 1st edition Geometrie – Anschauung und Begriffe by Jost-Hinrich Eschenburg, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Geometry - Intuition and Concepts
Author: Jost-Hinrich Eschenburg
Publisher: Springer Nature
ISBN: 3658386401
Category : Mathematics
Languages : en
Pages : 168
Book Description
This book deals with the geometry of visual space in all its aspects. As in any branch of mathematics, the aim is to trace the hidden to the obvious; the peculiarity of geometry is that the obvious is sometimes literally before one's eyes.Starting from intuition, spatial concepts are embedded in the pre-existing mathematical framework of linear algebra and calculus. The path from visualization to mathematically exact language is itself the learning content of this book. This is intended to close an often lamented gap in understanding between descriptive preschool and school geometry and the abstract concepts of linear algebra and calculus. At the same time, descriptive geometric modes of argumentation are justified because their embedding in the strict mathematical language has been clarified. The concepts of geometry are of a very different nature; they denote, so to speak, different layers of geometric thinking: some arguments use only concepts such as point, straight line, and incidence, others require angles and distances, still others symmetry considerations. Each of these conceptual fields determines a separate subfield of geometry and a separate chapter of this book, with the exception of the last-mentioned conceptual field "symmetry", which runs through all the others: - Incidence: Projective geometry - Parallelism: Affine geometry - Angle: Conformal Geometry - Distance: Metric Geometry - Curvature: Differential Geometry - Angle as distance measure: Spherical and Hyperbolic Geometry - Symmetry: Mapping Geometry. The mathematical experience acquired in the visual space can be easily transferred to much more abstract situations with the help of the vector space notion. The generalizations beyond the visual dimension point in two directions: Extension of the number concept and transcending the three illustrative dimensions. This book is a translation of the original German 1st edition Geometrie – Anschauung und Begriffe by Jost-Hinrich Eschenburg, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
Publisher: Springer Nature
ISBN: 3658386401
Category : Mathematics
Languages : en
Pages : 168
Book Description
This book deals with the geometry of visual space in all its aspects. As in any branch of mathematics, the aim is to trace the hidden to the obvious; the peculiarity of geometry is that the obvious is sometimes literally before one's eyes.Starting from intuition, spatial concepts are embedded in the pre-existing mathematical framework of linear algebra and calculus. The path from visualization to mathematically exact language is itself the learning content of this book. This is intended to close an often lamented gap in understanding between descriptive preschool and school geometry and the abstract concepts of linear algebra and calculus. At the same time, descriptive geometric modes of argumentation are justified because their embedding in the strict mathematical language has been clarified. The concepts of geometry are of a very different nature; they denote, so to speak, different layers of geometric thinking: some arguments use only concepts such as point, straight line, and incidence, others require angles and distances, still others symmetry considerations. Each of these conceptual fields determines a separate subfield of geometry and a separate chapter of this book, with the exception of the last-mentioned conceptual field "symmetry", which runs through all the others: - Incidence: Projective geometry - Parallelism: Affine geometry - Angle: Conformal Geometry - Distance: Metric Geometry - Curvature: Differential Geometry - Angle as distance measure: Spherical and Hyperbolic Geometry - Symmetry: Mapping Geometry. The mathematical experience acquired in the visual space can be easily transferred to much more abstract situations with the help of the vector space notion. The generalizations beyond the visual dimension point in two directions: Extension of the number concept and transcending the three illustrative dimensions. This book is a translation of the original German 1st edition Geometrie – Anschauung und Begriffe by Jost-Hinrich Eschenburg, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2020. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.
The Geometry of Schemes
Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 0387226397
Category : Mathematics
Languages : en
Pages : 265
Book Description
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Publisher: Springer Science & Business Media
ISBN: 0387226397
Category : Mathematics
Languages : en
Pages : 265
Book Description
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
A Primer of Infinitesimal Analysis
Author: John L. Bell
Publisher: Cambridge University Press
ISBN: 0521887186
Category : Mathematics
Languages : en
Pages : 7
Book Description
A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.
Publisher: Cambridge University Press
ISBN: 0521887186
Category : Mathematics
Languages : en
Pages : 7
Book Description
A rigorous, axiomatically formulated presentation of the 'zero-square', or 'nilpotent' infinitesimal.
The Four Pillars of Geometry
Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
New Foundations for Physical Geometry
Author: Tim Maudlin
Publisher:
ISBN: 0198701306
Category : Mathematics
Languages : en
Pages : 374
Book Description
Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.
Publisher:
ISBN: 0198701306
Category : Mathematics
Languages : en
Pages : 374
Book Description
Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.
Intuitive Geometry
Author: Imre Bárány
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 456
Book Description
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 456
Book Description
Elementary Topology
Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov
Publisher: American Mathematical Soc.
ISBN: 9780821886250
Category : Mathematics
Languages : en
Pages : 432
Book Description
This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.
Publisher: American Mathematical Soc.
ISBN: 9780821886250
Category : Mathematics
Languages : en
Pages : 432
Book Description
This text contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment. Proofs of theorems are separated from their formulations and are gathered at the end of each chapter, making this book appear like a problem book and also giving it appeal to the expert as a handbook. The book includes about 1,000 exercises.
Between Logic and Intuition
Author: Gila Sher
Publisher: Cambridge University Press
ISBN: 0521650763
Category : Mathematics
Languages : en
Pages : 352
Book Description
Offers a conspectus of major trends in the philosophy of logic and mathematics.
Publisher: Cambridge University Press
ISBN: 0521650763
Category : Mathematics
Languages : en
Pages : 352
Book Description
Offers a conspectus of major trends in the philosophy of logic and mathematics.
Geometric Methods in Algebra and Number Theory
Author: Fedor Bogomolov
Publisher: Springer Science & Business Media
ISBN: 0817644172
Category : Mathematics
Languages : en
Pages : 365
Book Description
* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry
Publisher: Springer Science & Business Media
ISBN: 0817644172
Category : Mathematics
Languages : en
Pages : 365
Book Description
* Contains a selection of articles exploring geometric approaches to problems in algebra, algebraic geometry and number theory * The collection gives a representative sample of problems and most recent results in algebraic and arithmetic geometry * Text can serve as an intense introduction for graduate students and those wishing to pursue research in algebraic and arithmetic geometry
An Invitation to Algebraic Geometry
Author: Karen E. Smith
Publisher: Springer Science & Business Media
ISBN: 1475744978
Category : Mathematics
Languages : en
Pages : 173
Book Description
This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.
Publisher: Springer Science & Business Media
ISBN: 1475744978
Category : Mathematics
Languages : en
Pages : 173
Book Description
This is a description of the underlying principles of algebraic geometry, some of its important developments in the twentieth century, and some of the problems that occupy its practitioners today. It is intended for the working or the aspiring mathematician who is unfamiliar with algebraic geometry but wishes to gain an appreciation of its foundations and its goals with a minimum of prerequisites. Few algebraic prerequisites are presumed beyond a basic course in linear algebra.