Author: T. A. Sarasvati Amma
Publisher: Motilal Banarsidass Publ.
ISBN: 9788120813441
Category : Geometry
Languages : en
Pages : 304
Book Description
This book is a geometrical survey of the Sanskrit and Prakrt scientific and quasi-scientific literature of India, beginning with the Vedic literature and ending with the early part of the 17th century. It deals in detail with the Sulbasutras in the Vedic literature, with the mathematical parts of Jaina Canonical works and of the Hindu Siddhantas and with the contributions to geometry made by the astronomer mathematicians Aryabhata I & II, Sripati, Bhaskara I & II, Sangamagrama Madhava, Paramesvara, Nilakantha, his disciples and a host of others. The works of the mathematicians Mahavira, Sridhara and Narayana Pandita and the Bakshali Manuscript have also been studied. The work seeks to explode the theory that the Indian mathematical genius was predominantly algebraic and computational and that it eschewed proofs and rationales. There was a school in India which delighted to demonstrate even algebraical results geometrically. In their search for a sufficiently good approximation for the value of pie Indian mathematicians had discovered the tool of integration. Which they used equally effectively for finding the surface area and volume of a sphere and in other fields. This discovery of integration was the sequel of the inextricable blending of geometry and series mathematics.
Geometry in Ancient and Medieval India
Author: T. A. Sarasvati Amma
Publisher: Motilal Banarsidass Publ.
ISBN: 9788120813441
Category : Geometry
Languages : en
Pages : 304
Book Description
This book is a geometrical survey of the Sanskrit and Prakrt scientific and quasi-scientific literature of India, beginning with the Vedic literature and ending with the early part of the 17th century. It deals in detail with the Sulbasutras in the Vedic literature, with the mathematical parts of Jaina Canonical works and of the Hindu Siddhantas and with the contributions to geometry made by the astronomer mathematicians Aryabhata I & II, Sripati, Bhaskara I & II, Sangamagrama Madhava, Paramesvara, Nilakantha, his disciples and a host of others. The works of the mathematicians Mahavira, Sridhara and Narayana Pandita and the Bakshali Manuscript have also been studied. The work seeks to explode the theory that the Indian mathematical genius was predominantly algebraic and computational and that it eschewed proofs and rationales. There was a school in India which delighted to demonstrate even algebraical results geometrically. In their search for a sufficiently good approximation for the value of pie Indian mathematicians had discovered the tool of integration. Which they used equally effectively for finding the surface area and volume of a sphere and in other fields. This discovery of integration was the sequel of the inextricable blending of geometry and series mathematics.
Publisher: Motilal Banarsidass Publ.
ISBN: 9788120813441
Category : Geometry
Languages : en
Pages : 304
Book Description
This book is a geometrical survey of the Sanskrit and Prakrt scientific and quasi-scientific literature of India, beginning with the Vedic literature and ending with the early part of the 17th century. It deals in detail with the Sulbasutras in the Vedic literature, with the mathematical parts of Jaina Canonical works and of the Hindu Siddhantas and with the contributions to geometry made by the astronomer mathematicians Aryabhata I & II, Sripati, Bhaskara I & II, Sangamagrama Madhava, Paramesvara, Nilakantha, his disciples and a host of others. The works of the mathematicians Mahavira, Sridhara and Narayana Pandita and the Bakshali Manuscript have also been studied. The work seeks to explode the theory that the Indian mathematical genius was predominantly algebraic and computational and that it eschewed proofs and rationales. There was a school in India which delighted to demonstrate even algebraical results geometrically. In their search for a sufficiently good approximation for the value of pie Indian mathematicians had discovered the tool of integration. Which they used equally effectively for finding the surface area and volume of a sphere and in other fields. This discovery of integration was the sequel of the inextricable blending of geometry and series mathematics.
The Origin of Geometry in India
Author: Ramkrishna Bhattacharya
Publisher: Cambridge Scholars Publishing
ISBN: 9781527530942
Category :
Languages : en
Pages : 221
Book Description
This book is the first complete study of the origin of geometry in India. In Ancient India, brick-built fire-altars (citi-s) were ordained for the Soma sacrifice, a Vedic rite, which led to the compilation of rule-books for making and arranging bricks. These volumes, called ÅsulbasÅ«tra-s, represent the first available texts of both geometry and mensuration, and were composed from 600 BCE, although the actual practice goes back to c. 1500 BCE. This book begins by detailing the history of geometry in Egypt, Mesopotamia, and Greece, and shows that geometry everywhere starts with brick-built structures, rather than the measurement of land. It emphasizes that geometry in India, unlike in Greece, was side-based rather than angle-based. The text is profusely illustrated.
Publisher: Cambridge Scholars Publishing
ISBN: 9781527530942
Category :
Languages : en
Pages : 221
Book Description
This book is the first complete study of the origin of geometry in India. In Ancient India, brick-built fire-altars (citi-s) were ordained for the Soma sacrifice, a Vedic rite, which led to the compilation of rule-books for making and arranging bricks. These volumes, called ÅsulbasÅ«tra-s, represent the first available texts of both geometry and mensuration, and were composed from 600 BCE, although the actual practice goes back to c. 1500 BCE. This book begins by detailing the history of geometry in Egypt, Mesopotamia, and Greece, and shows that geometry everywhere starts with brick-built structures, rather than the measurement of land. It emphasizes that geometry in India, unlike in Greece, was side-based rather than angle-based. The text is profusely illustrated.
A Modern Introduction to Ancient Indian Mathematics
Author: T. S. Bhanu Murthy
Publisher: New Age International
ISBN: 9788122403718
Category : Hindu mathematics
Languages : en
Pages : 230
Book Description
The Purpose Of This Book Is To Draw The Attention Of Students And Teachers Of Mathematics To The Historical Continuity Of Indian Mathematics, Starting From The Sulba Sutras Of The Vedas Up To The 17Th Century. The Book Includes Proofs, Not Presented So Far, Of The Propositions Stated In The Well-Known Treatise Vedic Mathematics By Sri Bharati Krishna Teertha. It Also Introduces To The Modern Reader The Work Of Aryabhata, Brahmagupta, Bhaskara And Madhava.
Publisher: New Age International
ISBN: 9788122403718
Category : Hindu mathematics
Languages : en
Pages : 230
Book Description
The Purpose Of This Book Is To Draw The Attention Of Students And Teachers Of Mathematics To The Historical Continuity Of Indian Mathematics, Starting From The Sulba Sutras Of The Vedas Up To The 17Th Century. The Book Includes Proofs, Not Presented So Far, Of The Propositions Stated In The Well-Known Treatise Vedic Mathematics By Sri Bharati Krishna Teertha. It Also Introduces To The Modern Reader The Work Of Aryabhata, Brahmagupta, Bhaskara And Madhava.
5000 Years of Geometry
Author: Christoph J. Scriba
Publisher: Birkhäuser
ISBN: 3034808984
Category : Mathematics
Languages : en
Pages : 638
Book Description
The present volume provides a fascinating overview of geometrical ideas and perceptions from the earliest cultures to the mathematical and artistic concepts of the 20th century. It is the English translation of the 3rd edition of the well-received German book “5000 Jahre Geometrie,” in which geometry is presented as a chain of developments in cultural history and their interaction with architecture, the visual arts, philosophy, science and engineering. Geometry originated in the ancient cultures along the Indus and Nile Rivers and in Mesopotamia, experiencing its first “Golden Age” in Ancient Greece. Inspired by the Greek mathematics, a new germ of geometry blossomed in the Islamic civilizations. Through the Oriental influence on Spain, this knowledge later spread to Western Europe. Here, as part of the medieval Quadrivium, the understanding of geometry was deepened, leading to a revival during the Renaissance. Together with parallel achievements in India, China, Japan and the ancient American cultures, the European approaches formed the ideas and branches of geometry we know in the modern age: coordinate methods, analytical geometry, descriptive and projective geometry in the 17th an 18th centuries, axiom systems, geometry as a theory with multiple structures and geometry in computer sciences in the 19th and 20th centuries. Each chapter of the book starts with a table of key historical and cultural dates and ends with a summary of essential contents of geometr y in the respective era. Compelling examples invite the reader to further explore the problems of geometry in ancient and modern times. The book will appeal to mathematicians interested in Geometry and to all readers with an interest in cultural history. From letters to the authors for the German language edition I hope it gets a translation, as there is no comparable work. Prof. J. Grattan-Guinness (Middlesex University London) "Five Thousand Years of Geometry" - I think it is the most handsome book I have ever seen from Springer and the inclusion of so many color plates really improves its appearance dramatically! Prof. J.W. Dauben (City University of New York) An excellent book in every respect. The authors have successfully combined the history of geometry with the general development of culture and history. ... The graphic design is also excellent. Prof. Z. Nádenik (Czech Technical University in Prague)
Publisher: Birkhäuser
ISBN: 3034808984
Category : Mathematics
Languages : en
Pages : 638
Book Description
The present volume provides a fascinating overview of geometrical ideas and perceptions from the earliest cultures to the mathematical and artistic concepts of the 20th century. It is the English translation of the 3rd edition of the well-received German book “5000 Jahre Geometrie,” in which geometry is presented as a chain of developments in cultural history and their interaction with architecture, the visual arts, philosophy, science and engineering. Geometry originated in the ancient cultures along the Indus and Nile Rivers and in Mesopotamia, experiencing its first “Golden Age” in Ancient Greece. Inspired by the Greek mathematics, a new germ of geometry blossomed in the Islamic civilizations. Through the Oriental influence on Spain, this knowledge later spread to Western Europe. Here, as part of the medieval Quadrivium, the understanding of geometry was deepened, leading to a revival during the Renaissance. Together with parallel achievements in India, China, Japan and the ancient American cultures, the European approaches formed the ideas and branches of geometry we know in the modern age: coordinate methods, analytical geometry, descriptive and projective geometry in the 17th an 18th centuries, axiom systems, geometry as a theory with multiple structures and geometry in computer sciences in the 19th and 20th centuries. Each chapter of the book starts with a table of key historical and cultural dates and ends with a summary of essential contents of geometr y in the respective era. Compelling examples invite the reader to further explore the problems of geometry in ancient and modern times. The book will appeal to mathematicians interested in Geometry and to all readers with an interest in cultural history. From letters to the authors for the German language edition I hope it gets a translation, as there is no comparable work. Prof. J. Grattan-Guinness (Middlesex University London) "Five Thousand Years of Geometry" - I think it is the most handsome book I have ever seen from Springer and the inclusion of so many color plates really improves its appearance dramatically! Prof. J.W. Dauben (City University of New York) An excellent book in every respect. The authors have successfully combined the history of geometry with the general development of culture and history. ... The graphic design is also excellent. Prof. Z. Nádenik (Czech Technical University in Prague)
Ancient Indian Leaps into Mathematics
Author: B.S. Yadav
Publisher: Springer Science & Business Media
ISBN: 0817646957
Category : Mathematics
Languages : en
Pages : 230
Book Description
This book presents contributions of mathematicians covering topics from ancient India, placing them in the broader context of the history of mathematics. Although the translations of some Sanskrit mathematical texts are available in the literature, Indian contributions are rarely presented in major Western historical works. Yet some of the well-known and universally-accepted discoveries from India, including the concept of zero and the decimal representation of numbers, have made lasting contributions to the foundation of modern mathematics. Through a systematic approach, this book examines these ancient mathematical ideas that were spread throughout India, China, the Islamic world, and Western Europe.
Publisher: Springer Science & Business Media
ISBN: 0817646957
Category : Mathematics
Languages : en
Pages : 230
Book Description
This book presents contributions of mathematicians covering topics from ancient India, placing them in the broader context of the history of mathematics. Although the translations of some Sanskrit mathematical texts are available in the literature, Indian contributions are rarely presented in major Western historical works. Yet some of the well-known and universally-accepted discoveries from India, including the concept of zero and the decimal representation of numbers, have made lasting contributions to the foundation of modern mathematics. Through a systematic approach, this book examines these ancient mathematical ideas that were spread throughout India, China, the Islamic world, and Western Europe.
Geometry and Algebra in Ancient Civilizations
Author: Bartel L. van der Waerden
Publisher: Springer Science & Business Media
ISBN: 3642617794
Category : Mathematics
Languages : en
Pages : 236
Book Description
Originally, my intention was to write a "History of Algebra", in two or three volumes. In preparing the first volume I saw that in ancient civiliza tions geometry and algebra cannot well be separated: more and more sec tions on ancient geometry were added. Hence the new title of the book: "Geometry and Algebra in Ancient Civilizations". A subsequent volume on the history of modem algebra is in preparation. It will deal mainly with field theory, Galois theory and theory of groups. I want to express my deeply felt gratitude to all those who helped me in shaping this volume. In particular, I want to thank Donald Blackmore Wagner (Berkeley) who put at my disposal his English translation of the most interesting parts of the Chinese "Nine Chapters of the Art of Arith metic" and of Liu Hui's commentary to this classic, and also Jacques Se siano (Geneva), who kindly allowed me to use his translation of the re cently discovered Arabic text of four books of Diophantos not extant in Greek. Warm thanks are also due to Wyllis Bandler (Colchester, England) who read my English text very carefully and suggested several improve ments, and to Annemarie Fellmann (Frankfurt) and Erwin Neuenschwan der (Zurich) who helped me in correcting the proof sheets. Miss Fellmann also typed the manuscript and drew the figures. I also want to thank the editorial staff and production department of Springer-Verlag for their nice cooperation.
Publisher: Springer Science & Business Media
ISBN: 3642617794
Category : Mathematics
Languages : en
Pages : 236
Book Description
Originally, my intention was to write a "History of Algebra", in two or three volumes. In preparing the first volume I saw that in ancient civiliza tions geometry and algebra cannot well be separated: more and more sec tions on ancient geometry were added. Hence the new title of the book: "Geometry and Algebra in Ancient Civilizations". A subsequent volume on the history of modem algebra is in preparation. It will deal mainly with field theory, Galois theory and theory of groups. I want to express my deeply felt gratitude to all those who helped me in shaping this volume. In particular, I want to thank Donald Blackmore Wagner (Berkeley) who put at my disposal his English translation of the most interesting parts of the Chinese "Nine Chapters of the Art of Arith metic" and of Liu Hui's commentary to this classic, and also Jacques Se siano (Geneva), who kindly allowed me to use his translation of the re cently discovered Arabic text of four books of Diophantos not extant in Greek. Warm thanks are also due to Wyllis Bandler (Colchester, England) who read my English text very carefully and suggested several improve ments, and to Annemarie Fellmann (Frankfurt) and Erwin Neuenschwan der (Zurich) who helped me in correcting the proof sheets. Miss Fellmann also typed the manuscript and drew the figures. I also want to thank the editorial staff and production department of Springer-Verlag for their nice cooperation.
The Mathematics of India
Author: P. P. Divakaran
Publisher: Springer
ISBN: 9811317747
Category : Mathematics
Languages : en
Pages : 441
Book Description
This book identifies three of the exceptionally fruitful periods of the millennia-long history of the mathematical tradition of India: the very beginning of that tradition in the construction of the now-universal system of decimal numeration and of a framework for planar geometry; a classical period inaugurated by Aryabhata’s invention of trigonometry and his enunciation of the principles of discrete calculus as applied to trigonometric functions; and a final phase that produced, in the work of Madhava, a rigorous infinitesimal calculus of such functions. The main highlight of this book is a detailed examination of these critical phases and their interconnectedness, primarily in mathematical terms but also in relation to their intellectual, cultural and historical contexts. Recent decades have seen a renewal of interest in this history, as manifested in the publication of an increasing number of critical editions and translations of texts, as well as in an informed analytic interpretation of their content by the scholarly community. The result has been the emergence of a more accurate and balanced view of the subject, and the book has attempted to take an account of these nascent insights. As part of an endeavour to promote the new awareness, a special attention has been given to the presentation of proofs of all significant propositions in modern terminology and notation, either directly transcribed from the original texts or by collecting together material from several texts.
Publisher: Springer
ISBN: 9811317747
Category : Mathematics
Languages : en
Pages : 441
Book Description
This book identifies three of the exceptionally fruitful periods of the millennia-long history of the mathematical tradition of India: the very beginning of that tradition in the construction of the now-universal system of decimal numeration and of a framework for planar geometry; a classical period inaugurated by Aryabhata’s invention of trigonometry and his enunciation of the principles of discrete calculus as applied to trigonometric functions; and a final phase that produced, in the work of Madhava, a rigorous infinitesimal calculus of such functions. The main highlight of this book is a detailed examination of these critical phases and their interconnectedness, primarily in mathematical terms but also in relation to their intellectual, cultural and historical contexts. Recent decades have seen a renewal of interest in this history, as manifested in the publication of an increasing number of critical editions and translations of texts, as well as in an informed analytic interpretation of their content by the scholarly community. The result has been the emergence of a more accurate and balanced view of the subject, and the book has attempted to take an account of these nascent insights. As part of an endeavour to promote the new awareness, a special attention has been given to the presentation of proofs of all significant propositions in modern terminology and notation, either directly transcribed from the original texts or by collecting together material from several texts.
Euclid's Elements
Author: Euclid
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 544
Book Description
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Geometry in Ancient India
Author: Satya Prakash
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 240
Book Description
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 240
Book Description
Geometry Civilized
Author: J. L. Heilbron
Publisher: Oxford University Press
ISBN: 9780198506904
Category : History
Languages : en
Pages : 344
Book Description
This lavishly illustrated book provides an unusually accessible approach to geometry by placing it in historical context. With concise discussions and carefully chosen illustrations the author brings the material to life by showing what problems motivated early geometers throughout the world. Geometry Civilized covers classical plane geometry, emphasizing the methods of Euclid but also drawing on advances made in China and India. It includes a wide range of problems, solutions, and illustrations, as well as a chapter on trigonometry, and prepares its readers for the study of solid geometry and conic sections.
Publisher: Oxford University Press
ISBN: 9780198506904
Category : History
Languages : en
Pages : 344
Book Description
This lavishly illustrated book provides an unusually accessible approach to geometry by placing it in historical context. With concise discussions and carefully chosen illustrations the author brings the material to life by showing what problems motivated early geometers throughout the world. Geometry Civilized covers classical plane geometry, emphasizing the methods of Euclid but also drawing on advances made in China and India. It includes a wide range of problems, solutions, and illustrations, as well as a chapter on trigonometry, and prepares its readers for the study of solid geometry and conic sections.