Geometrical Methods in the Theory of Ordinary Differential Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Geometrical Methods in the Theory of Ordinary Differential Equations PDF full book. Access full book title Geometrical Methods in the Theory of Ordinary Differential Equations by V.I. Arnold. Download full books in PDF and EPUB format.

Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations PDF Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 1461210372
Category : Mathematics
Languages : en
Pages : 366

Book Description
Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.

Geometrical Methods in the Theory of Ordinary Differential Equations

Geometrical Methods in the Theory of Ordinary Differential Equations PDF Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 1461210372
Category : Mathematics
Languages : en
Pages : 366

Book Description
Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.

Geometry in Partial Differential Equations

Geometry in Partial Differential Equations PDF Author: Agostino Prastaro
Publisher: World Scientific
ISBN: 9789810214074
Category : Mathematics
Languages : en
Pages : 482

Book Description
This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.

A Geometric Approach to Differential Forms

A Geometric Approach to Differential Forms PDF Author: David Bachman
Publisher: Springer Science & Business Media
ISBN: 0817683046
Category : Mathematics
Languages : en
Pages : 167

Book Description
This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.

Geometrical Approaches to Differential Equations

Geometrical Approaches to Differential Equations PDF Author: R. Martini
Publisher: Springer
ISBN: 354038166X
Category : Mathematics
Languages : en
Pages : 350

Book Description


Differential-Geometrical Methods in Statistics

Differential-Geometrical Methods in Statistics PDF Author: Shun-ichi Amari
Publisher: Springer Science & Business Media
ISBN: 1461250560
Category : Mathematics
Languages : en
Pages : 302

Book Description
From the reviews: "In this Lecture Note volume the author describes his differential-geometric approach to parametrical statistical problems summarizing the results he had published in a series of papers in the last five years. The author provides a geometric framework for a special class of test and estimation procedures for curved exponential families. ... ... The material and ideas presented in this volume are important and it is recommended to everybody interested in the connection between statistics and geometry ..." #Metrika#1 "More than hundred references are given showing the growing interest in differential geometry with respect to statistics. The book can only strongly be recommended to a geodesist since it offers many new insights into statistics on a familiar ground." #Manuscripta Geodaetica#2

Geometric Approaches to Differential Equations

Geometric Approaches to Differential Equations PDF Author: Peter J. Vassiliou
Publisher: Cambridge University Press
ISBN: 9780521775984
Category : Mathematics
Languages : en
Pages : 242

Book Description
A concise and accessible introduction to the wide range of topics in geometric approaches to differential equations.

Differential Geometry, Differential Equations, and Mathematical Physics

Differential Geometry, Differential Equations, and Mathematical Physics PDF Author: Maria Ulan
Publisher: Springer Nature
ISBN: 3030632539
Category : Mathematics
Languages : en
Pages : 231

Book Description
This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.

A Computational Differential Geometry Approach to Grid Generation

A Computational Differential Geometry Approach to Grid Generation PDF Author: Vladimir D. Liseikin
Publisher: Springer Science & Business Media
ISBN: 3540342362
Category : Science
Languages : en
Pages : 301

Book Description
The process of breaking up a physical domain into smaller sub-domains, known as meshing, facilitates the numerical solution of partial differential equations used to simulate physical systems. In an updated and expanded Second Edition, this monograph gives a detailed treatment based on the numerical solution of inverted Beltramian and diffusion equations with respect to monitor metrics for generating both structured and unstructured grids in domains and on surfaces.

Geometric Numerical Integration

Geometric Numerical Integration PDF Author: Ernst Hairer
Publisher: Springer Science & Business Media
ISBN: 3662050188
Category : Mathematics
Languages : en
Pages : 526

Book Description
This book deals with numerical methods that preserve properties of Hamiltonian systems, reversible systems, differential equations on manifolds and problems with highly oscillatory solutions. A complete self-contained theory of symplectic and symmetric methods, which include Runge-Kutta, composition, splitting, multistep and various specially designed integrators, is presented and their construction and practical merits are discussed. The long-time behaviour of the numerical solutions is studied using a backward error analysis (modified equations) combined with KAM theory. The book is illustrated by numerous figures, treats applications from physics and astronomy, and contains many numerical experiments and comparisons of different approaches.

Geometric Analysis of Hyperbolic Differential Equations: An Introduction

Geometric Analysis of Hyperbolic Differential Equations: An Introduction PDF Author: S. Alinhac
Publisher: Cambridge University Press
ISBN: 1139485814
Category : Mathematics
Languages : en
Pages :

Book Description
Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required.