Genuinely Multi-dimensional Finite Volume Schemes for Systems of Conservation Laws PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Genuinely Multi-dimensional Finite Volume Schemes for Systems of Conservation Laws PDF full book. Access full book title Genuinely Multi-dimensional Finite Volume Schemes for Systems of Conservation Laws by Jitka Saibertová. Download full books in PDF and EPUB format.

Genuinely Multi-dimensional Finite Volume Schemes for Systems of Conservation Laws

Genuinely Multi-dimensional Finite Volume Schemes for Systems of Conservation Laws PDF Author: Jitka Saibertová
Publisher:
ISBN: 9788021426054
Category :
Languages : cs
Pages : 27

Book Description


Genuinely Multi-dimensional Finite Volume Schemes for Systems of Conservation Laws

Genuinely Multi-dimensional Finite Volume Schemes for Systems of Conservation Laws PDF Author: Jitka Saibertová
Publisher:
ISBN: 9788021426054
Category :
Languages : cs
Pages : 27

Book Description


Numerical Schemes for Conservation Laws

Numerical Schemes for Conservation Laws PDF Author: Dietmar Kröner
Publisher: John Wiley & Sons
ISBN:
Category : Conservation laws (Mathematics)
Languages : en
Pages : 528

Book Description


Godunov-type Schemes

Godunov-type Schemes PDF Author: V. Guinot
Publisher: Elsevier
ISBN: 0080532586
Category : Science
Languages : en
Pages : 509

Book Description
Godunov-type schemes appear as good candidates for the next generation of commercial modelling software packages, the capability of which to handle discontinuous solution will be a basic requirement. It is in the interest of practising engineers and developers to be familiar with the specific features of discontinuous wave propagation problems and to be aware of the possibilities offered by Godunov-type schemes for their solution. This book aims to present the principles of such schemes in a way that is easily understandable to practising engineers.The features of hyperbolic conservation laws and their solutions are presented in the first two chapters. The principles of Godunov-type schemes are outlined in a third chapter. Chapters 4 and 5 cover the application of the original Godunov scheme to scalar laws and to hyperbolic systems of conservation laws respectively. Chapter 6 is devoted to higher-order schemes in one dimension of space. The design of such a scheme is described for the general case and applied to some well-known schemes such as the MUSCL and PPM schemes. Chapter 7 focuses on multidimensional problems. The classical alternate directions and finite volume approaches are presented together with the wave splitting technique that is described in depth with an application to two-dimensional systems. Chapter 8 deals with large-time step algorithms. These include front tracking-based methods, explicit-implicit techniques and the time-line interpolation technique. Three appendices provide notions on accuracy and stability issues, Riemann solvers and the user instructions for the computational codes provided in the enclosed CD-ROM.

Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems

Finite Volumes for Complex Applications X—Volume 2, Hyperbolic and Related Problems PDF Author: Emmanuel Franck
Publisher: Springer Nature
ISBN: 3031408608
Category : Mathematics
Languages : en
Pages : 296

Book Description
This volume comprises the second part of the proceedings of the 10th International Conference on Finite Volumes for Complex Applications, FVCA, held in Strasbourg, France, during October 30 to November 3, 2023. The Finite Volume method, and several of its variants, is a spatial discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods are also built to preserve some properties of the continuous equations, including maximum principles, dissipativity, monotone decay of the free energy, asymptotic stability, or stationary solutions. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. In recent years, the efficient implementation of these methods in numerical software packages, more specifically to be used in supercomputers, has drawn some attention. The first volume contains all invited papers, as well as the contributed papers focusing on finite volume schemes for elliptic and parabolic problems. They include structure-preserving schemes, convergence proofs, and error estimates for problems governed by elliptic and parabolic partial differential equations. This volume is focused on finite volume methods for hyperbolic and related problems, such as methods compatible with the low Mach number limit or able to exactly preserve steady solutions, the development and analysis of high order methods, or the discretization of kinetic equations.

Hyperbolic Problems: Contributed talks

Hyperbolic Problems: Contributed talks PDF Author: Eitan Tadmor
Publisher: American Mathematical Soc.
ISBN: 0821847309
Category : Mathematics
Languages : en
Pages : 690

Book Description
The International Conference on Hyperbolic Problems: Theory, Numerics and Applications, ``HYP2008'', was held at the University of Maryland from June 9-13, 2008. This was the twelfth meeting in the bi-annual international series of HYP conferences which originated in 1986 at Saint-Etienne, France, and over the last twenty years has become one of the highest quality and most successful conference series in Applied Mathematics. This book, the second in a two-part volume, contains more than sixty articles based on contributed talks given at the conference. The articles are written by leading researchers as well as promising young scientists and cover a diverse range of multi-disciplinary topics addressing theoretical, modeling and computational issues arising under the umbrella of ``hyperbolic PDEs''. This volume will bring readers to the forefront of research in this most active and important area in applied mathematics.

Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects

Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects PDF Author: Clément Cancès
Publisher: Springer
ISBN: 3319573977
Category : Mathematics
Languages : en
Pages : 457

Book Description
This first volume of the proceedings of the 8th conference on "Finite Volumes for Complex Applications" (Lille, June 2017) covers various topics including convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers comparing advanced numerical methods for Stokes and Navier–Stokes equations on a benchmark, as well as reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods, offering a comprehensive overview of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asy mptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.

Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws PDF Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221

Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

Systems of Conservation Laws

Systems of Conservation Laws PDF Author: Yuxi Zheng
Publisher: Springer Science & Business Media
ISBN: 1461201411
Category : Mathematics
Languages : en
Pages : 324

Book Description
This work should serve as an introductory text for graduate students and researchers working in the important area of partial differential equations with a focus on problems involving conservation laws. The only requisite for the reader is a knowledge of the elementary theory of partial differential equations. Key features of this work include: * broad range of topics, from the classical treatment to recent results, dealing with solutions to 2D compressible Euler equations * good review of basic concepts (1-D Riemann problems) * concrete solutions presented, with many examples, over 100 illustrations, open problems, and numerical schemes * numerous exercises, comprehensive bibliography and index * appeal to a wide audience of applied mathematicians, graduate students, physicists, and engineers Written in a clear, accessible style, the book emphasizes more recent results that will prepare readers to meet modern challenges in the subject, that is, to carry out theoretical, numerical, and asymptotical analysis.

Multidimensional Upwind Finite-volume Schemes for the Euler Equations and Finite-difference Schemes for the Maxwell's Equations

Multidimensional Upwind Finite-volume Schemes for the Euler Equations and Finite-difference Schemes for the Maxwell's Equations PDF Author: Yi Zhu
Publisher:
ISBN:
Category :
Languages : en
Pages : 260

Book Description


Hyperbolic Problems: Theory, Numerics, Applications

Hyperbolic Problems: Theory, Numerics, Applications PDF Author: Michael Fey
Publisher: Birkhäuser
ISBN: 3034887248
Category : Mathematics
Languages : en
Pages : 514

Book Description
[Infotext]((Kurztext))These are the proceedings of the 7th International Conference on Hyperbolic Problems, held in Zürich in February 1998. The speakers and contributors have been rigorously selected and present the state of the art in this field. The articles, both theoretical and numerical, encompass a wide range of applications, such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics. ((Volltext))These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phenomena and geometrical optics.