Genomic Selection in Plants PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Genomic Selection in Plants PDF full book. Access full book title Genomic Selection in Plants by Ani A. Elias. Download full books in PDF and EPUB format.

Genomic Selection in Plants

Genomic Selection in Plants PDF Author: Ani A. Elias
Publisher: CRC Press
ISBN: 1000655954
Category : Science
Languages : en
Pages : 233

Book Description
Genomic selection (GS) is a promising tool in the field of breeding especially in the era where genomic data is becoming cheaper. The potential of this tool has not been realized due to its limited adaptation in various crops. Marker Assisted Selection (MAS) has been the method of choice for plant breeders while using the genomic information in the breeding pipeline. MAS, however, fails to capture vital minor gene effects while focusing only on the major genes, which is not ideal for breeding advancement especially for quantitative traits such as yield. The main aim of statistical methodologies coming under the umbrella of GS on using the whole genome information is to predict potential candidates for breeding advancement while optimizing the use of resources such as land, manpower, and most importantly time. Lack of proper understanding of the methods and their applications is one of the reasons why breeders shy away from this tool. The book is meant for biologists, especially breeders, and provides a comprehensive idea of the statistical methodologies used in GS, guidance on the choice of models, and design of datasets. The book also encourages the readers to adopt GS by demonstrating the current scenarios of these models in some of the important crops among oilseeds, vegetables, legumes, tuber crops, and cereals. For ease of implementation of GS, the book also provides hands-on scripts on GS data design and modeling in a popular open-source statistical program. Additionally, prospective in GS model development and thereby enhancement in crop improvement programs is discussed.

Genomic Selection in Plants

Genomic Selection in Plants PDF Author: Ani A. Elias
Publisher: CRC Press
ISBN: 1000655954
Category : Science
Languages : en
Pages : 233

Book Description
Genomic selection (GS) is a promising tool in the field of breeding especially in the era where genomic data is becoming cheaper. The potential of this tool has not been realized due to its limited adaptation in various crops. Marker Assisted Selection (MAS) has been the method of choice for plant breeders while using the genomic information in the breeding pipeline. MAS, however, fails to capture vital minor gene effects while focusing only on the major genes, which is not ideal for breeding advancement especially for quantitative traits such as yield. The main aim of statistical methodologies coming under the umbrella of GS on using the whole genome information is to predict potential candidates for breeding advancement while optimizing the use of resources such as land, manpower, and most importantly time. Lack of proper understanding of the methods and their applications is one of the reasons why breeders shy away from this tool. The book is meant for biologists, especially breeders, and provides a comprehensive idea of the statistical methodologies used in GS, guidance on the choice of models, and design of datasets. The book also encourages the readers to adopt GS by demonstrating the current scenarios of these models in some of the important crops among oilseeds, vegetables, legumes, tuber crops, and cereals. For ease of implementation of GS, the book also provides hands-on scripts on GS data design and modeling in a popular open-source statistical program. Additionally, prospective in GS model development and thereby enhancement in crop improvement programs is discussed.

Genomic selection and characterization in cereals

Genomic selection and characterization in cereals PDF Author: Muhammad Abdul Rehman Rashid
Publisher: Frontiers Media SA
ISBN: 2832507492
Category : Science
Languages : en
Pages : 305

Book Description


Genomic Selection: Lessons Learned and Perspectives

Genomic Selection: Lessons Learned and Perspectives PDF Author: Johannes W. R. Martini
Publisher: Frontiers Media SA
ISBN: 2889746747
Category : Science
Languages : en
Pages : 261

Book Description
Genomic selection (GS) has been the most prominent topic in breeding science in the last two decades. The continued interest is promoted by its huge potential impact on the efficiency of breeding. Predicting a breeding value based on molecular markers and phenotypic values of relatives may be used to manipulate three parameters of the breeder's equation. First, the accuracy of the selection may be improved by predicting the genetic value more reliably when considering the records of relatives and the realized genomic relationship. Secondly, genotyping and predicting may be more cost effective than comprehensive phenotyping. Resources can instead be allocated to increasing population sizes and selection intensity. The third, probably most important factor, is time. As shown in dairy cattle breeding, reducing cycle time by crossing selection candidates earlier may have the strongest impact on selection gain. Many different prediction models have been used, and different ways of using predicted values in a breeding program have been explored. We would like to address the questions: i. How did GS change breeding schemes of different crops in the last 20 years? ii. What was the impact on realized selection gain? iii. What would be the best structure of a crop-specific breeding scheme to exploit the full potential of GS? iv. What is the potential of hybrid prediction, epistasis effect models, deep learning methods and other extensions of the standard prediction of additive effects? v. What are the long-term effects of GS? vi. Can predictive breeding approaches also be used to harness genetic resources from germplasm banks in a more efficient way to adapt current germplasm to new environmental challenges? This Research Topic welcomes submissions of Original Research papers, Opinions, Perspectives, Reviews, and Mini-Reviews related to these themes: 1. Genomic selection: statistical methodology 2. The (optimal) use of GS in breeding schemes 3. Practical experiences with GS (selection gain, long-term effects, negative side effects) 4. Predictive approaches to harness genetic resources Concerning point 1): If an original research paper compares different methods empirically without theoretical considerations on when one or the other method should be better, the methods should be compared with at least five different data sets. The data sets should differ either in crop, genotyping method or its source, for instance from a breeding program or gene bank accessions. Concerning point 2): Manuscripts addressing the use of GS in breeding schemes should illustrate breeding schemes that are run in practice. General ideas about schemes that may be run in the future may be considered as 'Perspective' articles. Conflict of Interest statements: - Topic Editor Valentin Wimmer is affiliated to KWS SAAT SE & Co. KGaA, Germany. - Topic Editor Brian Gardunia is affiliated to Bayer Crop Sciences and has a collaboration with AbacusBio, and is an author on patents with Bayer Crop Sciences. The other Topic Editors did not disclose any conflicts of interest. Image credit: CIMMYT, reproduced under the CC BY-NC-SA 2.0 license

Applications of Genetic and Genomic Research in Cereals

Applications of Genetic and Genomic Research in Cereals PDF Author: Thomas Miedaner
Publisher: Woodhead Publishing
ISBN: 0081022131
Category : Technology & Engineering
Languages : en
Pages : 382

Book Description
Applications of Genetic and Genomic Research in Cereals covers new techniques for practical breeding, also discussing genetic and genomic approaches for improving special traits. Additional sections cover drought tolerance, biotic stress, biomass production, the impact of modern techniques on practical breeding, hybrid breeding, genetic diversity, and genomic selection. Written by an international team of top academics and edited by an expert in the field, this book will be of value to academics working in the agricultural sciences and essential reading for professionals working in plant breeding. - Provides in-depth and comprehensive coverage of a rapidly developing field - Presents techniques used in genetic and genomics research, with coverage of genotyping, gene cloning, genome editing and engineering and phenotyping in various cereals - Includes the latest genetic and genomic approaches for improving special traits - drought tolerance, biotic stress and biomass production - Covers breeding practices, with chapters on the genetic diversity of wheat, hybrid breeding and the potential of rye and barley crops

New Developments for Embracing Genomic Selection in Breeding Applications

New Developments for Embracing Genomic Selection in Breeding Applications PDF Author: Diego Jarquin
Publisher: Frontiers Media SA
ISBN: 2889744345
Category : Science
Languages : en
Pages : 197

Book Description


Quantitative Genetics in Maize Breeding

Quantitative Genetics in Maize Breeding PDF Author: Arnel R. Hallauer
Publisher: Springer Science & Business Media
ISBN: 1441907661
Category : Science
Languages : en
Pages : 669

Book Description
Maize is used in an endless list of products that are directly or indirectly related to human nutrition and food security. Maize is grown in producer farms, farmers depend on genetically improved cultivars, and maize breeders develop improved maize cultivars for farmers. Nikolai I. Vavilov defined plant breeding as plant evolution directed by man. Among crops, maize is one of the most successful examples for breeder-directed evolution. Maize is a cross-pollinated species with unique and separate male and female organs allowing techniques from both self and cross-pollinated crops to be utilized. As a consequence, a diverse set of breeding methods can be utilized for the development of various maize cultivar types for all economic conditions (e.g., improved populations, inbred lines, and their hybrids for different types of markets). Maize breeding is the science of maize cultivar development. Public investment in maize breeding from 1865 to 1996 was $3 billion (Crosbie et al., 2004) and the return on investment was $260 billion as a consequence of applied maize breeding, even without full understanding of the genetic basis of heterosis. The principles of quantitative genetics have been successfully applied by maize breeders worldwide to adapt and improve germplasm sources of cultivars for very simple traits (e.g. maize flowering) and very complex ones (e.g., grain yield). For instance, genomic efforts have isolated early-maturing genes and QTL for potential MAS but very simple and low cost phenotypic efforts have caused significant and fast genetic progress across genotypes moving elite tropical and late temperate maize northward with minimal investment. Quantitative genetics has allowed the integration of pre-breeding with cultivar development by characterizing populations genetically, adapting them to places never thought of (e.g., tropical to short-seasons), improving them by all sorts of intra- and inter-population recurrent selection methods, extracting lines with more probability of success, and exploiting inbreeding and heterosis. Quantitative genetics in maize breeding has improved the odds of developing outstanding maize cultivars from genetically broad based improved populations such as B73. The inbred-hybrid concept in maize was a public sector invention 100 years ago and it is still considered one of the greatest achievements in plant breeding. Maize hybrids grown by farmers today are still produced following this methodology and there is still no limit to genetic improvement when most genes are targeted in the breeding process. Heterotic effects are unique for each hybrid and exotic genetic materials (e.g., tropical, early maturing) carry useful alleles for complex traits not present in the B73 genome just sequenced while increasing the genetic diversity of U.S. hybrids. Breeding programs based on classical quantitative genetics and selection methods will be the basis for proving theoretical approaches on breeding plans based on molecular markers. Mating designs still offer large sample sizes when compared to QTL approaches and there is still a need to successful integration of these methods. There is a need to increase the genetic diversity of maize hybrids available in the market (e.g., there is a need to increase the number of early maturing testers in the northern U.S.). Public programs can still develop new and genetically diverse products not available in industry. However, public U.S. maize breeding programs have either been discontinued or are eroding because of decreasing state and federal funding toward basic science. Future significant genetic gains in maize are dependent on the incorporation of useful and unique genetic diversity not available in industry (e.g., NDSU EarlyGEM lines). The integration of pre-breeding methods with cultivar development should enhance future breeding efforts to maintain active public breeding programs not only adapting and improving genetically broad-based germplasm but also developing unique products and training the next generation of maize breeders producing research dissertations directly linked to breeding programs. This is especially important in areas where commercial hybrids are not locally bred. More than ever public and private institutions are encouraged to cooperate in order to share breeding rights, research goals, winter nurseries, managed stress environments, and latest technology for the benefit of producing the best possible hybrids for farmers with the least cost. We have the opportunity to link both classical and modern technology for the benefit of breeding in close cooperation with industry without the need for investing in academic labs and time (e.g., industry labs take a week vs months/years in academic labs for the same work). This volume, as part of the Handbook of Plant Breeding series, aims to increase awareness of the relative value and impact of maize breeding for food, feed, and fuel security. Without breeding programs continuously developing improved germplasm, no technology can develop improved cultivars. Quantitative Genetics in Maize Breeding presents principles and data that can be applied to maximize genetic improvement of germplasm and develop superior genotypes in different crops. The topics included should be of interest of graduate students and breeders conducting research not only on breeding and selection methods but also developing pure lines and hybrid cultivars in crop species. This volume is a unique and permanent contribution to breeders, geneticists, students, policy makers, and land-grant institutions still promoting quality research in applied plant breeding as opposed to promoting grant monies and indirect costs at any short-term cost. The book is dedicated to those who envision the development of the next generation of cultivars with less need of water and inputs, with better nutrition; and with higher percentages of exotic germplasm as well as those that pursue independent research goals before searching for funding. Scientists are encouraged to use all possible breeding methodologies available (e.g., transgenics, classical breeding, MAS, and all possible combinations could be used with specific sound long and short-term goals on mind) once germplasm is chosen making wise decisions with proven and scientifically sound technologies for assisting current breeding efforts depending on the particular trait under selection. Arnel R. Hallauer is C. F. Curtiss Distinguished Professor in Agriculture (Emeritus) at Iowa State University (ISU). Dr. Hallauer has led maize-breeding research for mid-season maturity at ISU since 1958. His work has had a worldwide impact on plant-breeding programs, industry, and students and was named a member of the National Academy of Sciences. Hallauer is a native of Kansas, USA. José B. Miranda Filho is full-professor in the Department of Genetics, Escola Superior de Agricultura Luiz de Queiroz - University of São Paulo located at Piracicaba, Brazil. His research interests have emphasized development of quantitative genetic theory and its application to maize breeding. Miranda Filho is native of Pirassununga, São Paulo, Brazil. M.J. Carena is professor of plant sciences at North Dakota State University (NDSU). Dr. Carena has led maize-breeding research for short-season maturity at NDSU since 1999. This program is currently one the of the few public U.S. programs left integrating pre-breeding with cultivar development and training in applied maize breeding. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Carena is a native of Buenos Aires, Argentina. http://www.ag.ndsu.nodak.edu/plantsci/faculty/Carena.htm

Advances in Wheat Genetics: From Genome to Field

Advances in Wheat Genetics: From Genome to Field PDF Author: Yasunari Ogihara
Publisher: Springer
ISBN: 4431556753
Category : Science
Languages : en
Pages : 421

Book Description
This proceedings is a collection of 46 selected papers that were presented at the 12th International Wheat Genetics Symposium (IWGS). Since the launch of the wheat genome sequencing project in 2005, the arrival of draft genome sequences has marked a new era in wheat genetics and genomics, catalyzing rapid advancement in the field. This book provides a comprehensive review of the forefront of wheat research, across various important topics such as germplasm and genetic diversity, cytogenetics and allopolyploid evolution, genome sequencing, structural and functional genomics, gene function and molecular biology, biotic stress, abiotic stress, grain quality, and classical and molecular breeding. Following an introduction, 9 parts of the book are dedicated to each of these topics. A final, 11th part entitled “Toward Sustainable Wheat Production” contains 7 excellent papers that were presented in the 12th IWGS Special Session supported by the OECD. With rapid population growth and radical climate changes, the world faces a global food crisis and is in need of another Green Revolution to boost yields of wheat and other widely grown staple crops. Although this book focuses on wheat, many of the newly developed techniques and results presented here can be applied to other plant species with large and complex genomes. As such, this volume is highly recommended for all students and researchers in wheat sciences and related plant sciences and for those who are interested in stable food production and food security.

Multivariate Statistical Machine Learning Methods for Genomic Prediction

Multivariate Statistical Machine Learning Methods for Genomic Prediction PDF Author: Osval Antonio Montesinos López
Publisher: Springer Nature
ISBN: 3030890104
Category : Technology & Engineering
Languages : en
Pages : 707

Book Description
This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Molecular Genetics, Genomics and Biotechnology of Crop Plants Breeding

Molecular Genetics, Genomics and Biotechnology of Crop Plants Breeding PDF Author: Søren K. Rasmussen
Publisher: MDPI
ISBN: 3039288776
Category : Science
Languages : en
Pages : 238

Book Description
This Special Issue on molecular genetics, genomics, and biotechnology in crop plant breeding seeks to encourage the use of the tools currently available. It features nine research papers that address quality traits, grain yield, and mutations by exploring cytoplasmic male sterility, the delicate control of flowering in rice, the removal of anti-nutritional factors, the use and development of new technologies for non-model species marker technology, site-directed mutagenesis and GMO regulation, genomics selection and genome-wide association studies, how to cope with abiotic stress, and an exploration of fruit trees adapted to harsh environments for breeding purposes. A further four papers review the genetics of pre-harvest spouting, readiness for climate-smart crop development, genomic selection in the breeding of cereal crops, and the large numbers of mutants in straw lignin biosynthesis and deposition.

Plant Breeding Reviews, Volume 22

Plant Breeding Reviews, Volume 22 PDF Author: Jules Janick
Publisher: John Wiley & Sons
ISBN: 0471215414
Category : Science
Languages : en
Pages : 456

Book Description
Plant Breeding Reviews, Volume 22 presents state-of-the-art reviews on plant genetics and the breeding of all types of crops by both traditional means and molecular methods. The emphasis of the series is on methodology, a practical understanding of crop genetics, and applications to major crops.