Author: I. M. Gel′fand
Publisher: American Mathematical Soc.
ISBN: 1470426625
Category : Mathematics
Languages : en
Pages : 402
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The main goal of Volume 4 is to develop the functional analysis setup for the universe of generalized functions. The main notion introduced in this volume is the notion of rigged Hilbert space (also known as the equipped Hilbert space, or Gelfand triple). Such space is, in fact, a triple of topological vector spaces E⊂H⊂E′, where H is a Hilbert space, E′ is dual to E, and inclusions E⊂H and H⊂E′ are nuclear operators. The book is devoted to various applications of this notion, such as the theory of positive definite generalized functions, the theory of generalized stochastic processes, and the study of measures on linear topological spaces.
Generalized Functions, Volume 4
Author: I. M. Gel′fand
Publisher: American Mathematical Soc.
ISBN: 1470426625
Category : Mathematics
Languages : en
Pages : 402
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The main goal of Volume 4 is to develop the functional analysis setup for the universe of generalized functions. The main notion introduced in this volume is the notion of rigged Hilbert space (also known as the equipped Hilbert space, or Gelfand triple). Such space is, in fact, a triple of topological vector spaces E⊂H⊂E′, where H is a Hilbert space, E′ is dual to E, and inclusions E⊂H and H⊂E′ are nuclear operators. The book is devoted to various applications of this notion, such as the theory of positive definite generalized functions, the theory of generalized stochastic processes, and the study of measures on linear topological spaces.
Publisher: American Mathematical Soc.
ISBN: 1470426625
Category : Mathematics
Languages : en
Pages : 402
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The main goal of Volume 4 is to develop the functional analysis setup for the universe of generalized functions. The main notion introduced in this volume is the notion of rigged Hilbert space (also known as the equipped Hilbert space, or Gelfand triple). Such space is, in fact, a triple of topological vector spaces E⊂H⊂E′, where H is a Hilbert space, E′ is dual to E, and inclusions E⊂H and H⊂E′ are nuclear operators. The book is devoted to various applications of this notion, such as the theory of positive definite generalized functions, the theory of generalized stochastic processes, and the study of measures on linear topological spaces.
Generalized Functions Theory and Technique
Author: Ram P. Kanwal
Publisher: Springer Science & Business Media
ISBN: 1468400355
Category : Mathematics
Languages : en
Pages : 474
Book Description
This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.
Publisher: Springer Science & Business Media
ISBN: 1468400355
Category : Mathematics
Languages : en
Pages : 474
Book Description
This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.
Generalized Functions, Volume 2
Author: I. M. Gel'fand
Publisher: American Mathematical Soc.
ISBN: 1470426595
Category : Mathematics
Languages : en
Pages : 274
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel'fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. Volume 2 is devoted to detailed study of generalized functions as linear functionals on appropriate spaces of smooth test functions. In Chapter 1, the authors introduce and study countable-normed linear topological spaces, laying out a general theoretical foundation for the analysis of spaces of generalized functions. The two most important classes of spaces of test functions are spaces of compactly supported functions and Schwartz spaces of rapidly decreasing functions. In Chapters 2 and 3 of the book, the authors transfer many results presented in Volume 1 to generalized functions corresponding to these more general spaces. Finally, Chapter 4 is devoted to the study of the Fourier transform; in particular, it includes appropriate versions of the Paley-Wiener theorem.
Publisher: American Mathematical Soc.
ISBN: 1470426595
Category : Mathematics
Languages : en
Pages : 274
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel'fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. Volume 2 is devoted to detailed study of generalized functions as linear functionals on appropriate spaces of smooth test functions. In Chapter 1, the authors introduce and study countable-normed linear topological spaces, laying out a general theoretical foundation for the analysis of spaces of generalized functions. The two most important classes of spaces of test functions are spaces of compactly supported functions and Schwartz spaces of rapidly decreasing functions. In Chapters 2 and 3 of the book, the authors transfer many results presented in Volume 1 to generalized functions corresponding to these more general spaces. Finally, Chapter 4 is devoted to the study of the Fourier transform; in particular, it includes appropriate versions of the Paley-Wiener theorem.
Fourier Analysis and Its Applications
Author: G. B. Folland
Publisher: American Mathematical Soc.
ISBN: 0821847902
Category : Fourier analysis
Languages : en
Pages : 447
Book Description
This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
Publisher: American Mathematical Soc.
ISBN: 0821847902
Category : Fourier analysis
Languages : en
Pages : 447
Book Description
This book presents the theory and applications of Fourier series and integrals, eigenfunction expansions, and related topics, on a level suitable for advanced undergraduates. It includes material on Bessel functions, orthogonal polynomials, and Laplace transforms, and it concludes with chapters on generalized functions and Green's functions for ordinary and partial differential equations. The book deals almost exclusively with aspects of these subjects that are useful in physics and engineering, and includes a wide variety of applications. On the theoretical side, it uses ideas from modern analysis to develop the concepts and reasoning behind the techniques without getting bogged down in the technicalities of rigorous proofs.
Distributions
Author: Pulin Kumar Bhattacharyya
Publisher: Walter de Gruyter
ISBN: 3110269295
Category : Mathematics
Languages : en
Pages : 871
Book Description
This book grew out of a course taught in the Department of Mathematics, Indian Institute of Technology, Delhi, which was tailored to the needs of the applied community of mathematicians, engineers, physicists etc., who were interested in studying the problems of mathematical physics in general and their approximate solutions on computer in particular. Almost all topics which will be essential for the study of Sobolev spaces and their applications in the elliptic boundary value problems and their finite element approximations are presented. Also many additional topics of interests for specific applied disciplines and engineering, for example, elementary solutions, derivatives of discontinuous functions of several variables, delta-convergent sequences of functions, Fourier series of distributions, convolution system of equations etc. have been included along with many interesting examples.
Publisher: Walter de Gruyter
ISBN: 3110269295
Category : Mathematics
Languages : en
Pages : 871
Book Description
This book grew out of a course taught in the Department of Mathematics, Indian Institute of Technology, Delhi, which was tailored to the needs of the applied community of mathematicians, engineers, physicists etc., who were interested in studying the problems of mathematical physics in general and their approximate solutions on computer in particular. Almost all topics which will be essential for the study of Sobolev spaces and their applications in the elliptic boundary value problems and their finite element approximations are presented. Also many additional topics of interests for specific applied disciplines and engineering, for example, elementary solutions, derivatives of discontinuous functions of several variables, delta-convergent sequences of functions, Fourier series of distributions, convolution system of equations etc. have been included along with many interesting examples.
Conformal Blocks, Generalized Theta Functions and the Verlinde Formula
Author: Shrawan Kumar
Publisher: Cambridge University Press
ISBN: 1316518167
Category : Mathematics
Languages : en
Pages : 539
Book Description
This book gives a complete proof of the Verlinde formula and of its connection to generalized theta functions.
Publisher: Cambridge University Press
ISBN: 1316518167
Category : Mathematics
Languages : en
Pages : 539
Book Description
This book gives a complete proof of the Verlinde formula and of its connection to generalized theta functions.
Generalized Functions, Volume 5
Author: I. M. Gel′fand
Publisher: American Mathematical Soc.
ISBN: 1470426633
Category : Mathematics
Languages : en
Pages : 474
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying idea of Volume 5 in the series is the application of the theory of generalized functions developed in earlier volumes to problems of integral geometry, to representations of Lie groups, specifically of the Lorentz group, and to harmonic analysis on corresponding homogeneous spaces. The book is written with great clarity and requires little in the way of special previous knowledge of either group representation theory or integral geometry; it is also independent of the earlier volumes in the series. The exposition starts with the definition, properties, and main results related to the classical Radon transform, passing to integral geometry in complex space, representations of the group of complex unimodular matrices of second order, and harmonic analysis on this group and on most important homogeneous spaces related to this group. The volume ends with the study of representations of the group of real unimodular matrices of order two.
Publisher: American Mathematical Soc.
ISBN: 1470426633
Category : Mathematics
Languages : en
Pages : 474
Book Description
The first systematic theory of generalized functions (also known as distributions) was created in the early 1950s, although some aspects were developed much earlier, most notably in the definition of the Green's function in mathematics and in the work of Paul Dirac on quantum electrodynamics in physics. The six-volume collection, Generalized Functions, written by I. M. Gel′fand and co-authors and published in Russian between 1958 and 1966, gives an introduction to generalized functions and presents various applications to analysis, PDE, stochastic processes, and representation theory. The unifying idea of Volume 5 in the series is the application of the theory of generalized functions developed in earlier volumes to problems of integral geometry, to representations of Lie groups, specifically of the Lorentz group, and to harmonic analysis on corresponding homogeneous spaces. The book is written with great clarity and requires little in the way of special previous knowledge of either group representation theory or integral geometry; it is also independent of the earlier volumes in the series. The exposition starts with the definition, properties, and main results related to the classical Radon transform, passing to integral geometry in complex space, representations of the group of complex unimodular matrices of second order, and harmonic analysis on this group and on most important homogeneous spaces related to this group. The volume ends with the study of representations of the group of real unimodular matrices of order two.
Function Spaces and Potential Theory
Author: David R. Adams
Publisher: Springer Science & Business Media
ISBN: 3662032821
Category : Mathematics
Languages : en
Pages : 372
Book Description
"..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society
Publisher: Springer Science & Business Media
ISBN: 3662032821
Category : Mathematics
Languages : en
Pages : 372
Book Description
"..carefully and thoughtfully written and prepared with, in my opinion, just the right amount of detail included...will certainly be a primary source that I shall turn to." Proceedings of the Edinburgh Mathematical Society
Generalized Functions
Transform Analysis of Generalized Functions
Author: O.P. Misra
Publisher: Elsevier
ISBN: 0080872301
Category : Mathematics
Languages : en
Pages : 347
Book Description
Transform Analysis of Generalized Functions concentrates on finite parts of integrals, generalized functions and distributions. It gives a unified treatment of the distributional setting with transform analysis, i.e. Fourier, Laplace, Stieltjes, Mellin, Hankel and Bessel Series.Included are accounts of applications of the theory of integral transforms in a distributional setting to the solution of problems arising in mathematical physics. Information on distributional solutions of differential, partial differential equations and integral equations is conveniently collected here.The volume will serve as introductory and reference material for those interested in analysis, applications, physics and engineering.
Publisher: Elsevier
ISBN: 0080872301
Category : Mathematics
Languages : en
Pages : 347
Book Description
Transform Analysis of Generalized Functions concentrates on finite parts of integrals, generalized functions and distributions. It gives a unified treatment of the distributional setting with transform analysis, i.e. Fourier, Laplace, Stieltjes, Mellin, Hankel and Bessel Series.Included are accounts of applications of the theory of integral transforms in a distributional setting to the solution of problems arising in mathematical physics. Information on distributional solutions of differential, partial differential equations and integral equations is conveniently collected here.The volume will serve as introductory and reference material for those interested in analysis, applications, physics and engineering.