Author: Nicola Bellomo
Publisher: Springer Science & Business Media
ISBN: 0817646108
Category : Mathematics
Languages : en
Pages : 206
Book Description
Analysis of nonlinear models and problems is crucial in the application of mathematics to real-world problems. This book approaches this important topic by focusing on collocation methods for solving nonlinear evolution equations and applying them to a variety of mathematical problems. These include wave motion models, hydrodynamic models of vehicular traffic flow, convection-diffusion models, reaction-diffusion models, and population dynamics models. The book may be used as a textbook for graduate courses on collocation methods, nonlinear modeling, and nonlinear differential equations. Examples and exercises are included in every chapter.
Generalized Collocation Methods
Author: Nicola Bellomo
Publisher: Springer Science & Business Media
ISBN: 0817646108
Category : Mathematics
Languages : en
Pages : 206
Book Description
Analysis of nonlinear models and problems is crucial in the application of mathematics to real-world problems. This book approaches this important topic by focusing on collocation methods for solving nonlinear evolution equations and applying them to a variety of mathematical problems. These include wave motion models, hydrodynamic models of vehicular traffic flow, convection-diffusion models, reaction-diffusion models, and population dynamics models. The book may be used as a textbook for graduate courses on collocation methods, nonlinear modeling, and nonlinear differential equations. Examples and exercises are included in every chapter.
Publisher: Springer Science & Business Media
ISBN: 0817646108
Category : Mathematics
Languages : en
Pages : 206
Book Description
Analysis of nonlinear models and problems is crucial in the application of mathematics to real-world problems. This book approaches this important topic by focusing on collocation methods for solving nonlinear evolution equations and applying them to a variety of mathematical problems. These include wave motion models, hydrodynamic models of vehicular traffic flow, convection-diffusion models, reaction-diffusion models, and population dynamics models. The book may be used as a textbook for graduate courses on collocation methods, nonlinear modeling, and nonlinear differential equations. Examples and exercises are included in every chapter.
Generalized Collocation Method and Its Particular Cases and Comparative Analysis
Author: Paul Shuleshko
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 76
Book Description
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 76
Book Description
Generalized Multipole Techniques for Electromagnetic and Light Scattering
Author: T. Wriedt
Publisher: Elsevier
ISBN: 0080532373
Category : Technology & Engineering
Languages : en
Pages : 273
Book Description
This book is an edited volume of nine papers covering the different variants of the generalized multipole techniques (GMT). The papers were presented at the recent 3rd Workshop on Electromagnetics and Light Scattering - Theory and Applications, which focused on current GMT methods. These include the multiple multipole method (MMP), the discrete sources method (DSM), Yasuura's method, method of auxiliary sources and null-field method with discrete sources. Each paper presents a full theoretical description as well as some applications of the method in electrical engineering and optics. It also includes both 2D and 3D methods and other applications developed in the former Soviet Union and Japan.
Publisher: Elsevier
ISBN: 0080532373
Category : Technology & Engineering
Languages : en
Pages : 273
Book Description
This book is an edited volume of nine papers covering the different variants of the generalized multipole techniques (GMT). The papers were presented at the recent 3rd Workshop on Electromagnetics and Light Scattering - Theory and Applications, which focused on current GMT methods. These include the multiple multipole method (MMP), the discrete sources method (DSM), Yasuura's method, method of auxiliary sources and null-field method with discrete sources. Each paper presents a full theoretical description as well as some applications of the method in electrical engineering and optics. It also includes both 2D and 3D methods and other applications developed in the former Soviet Union and Japan.
Collocation Methods for Volterra Integral and Related Functional Differential Equations
Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620
Book Description
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620
Book Description
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.
Spectral and High Order Methods for Partial Differential Equations
Author: Jan S. Hesthaven
Publisher: Springer Science & Business Media
ISBN: 3642153372
Category : Mathematics
Languages : en
Pages : 507
Book Description
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.
Publisher: Springer Science & Business Media
ISBN: 3642153372
Category : Mathematics
Languages : en
Pages : 507
Book Description
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.
Uncertainty Management for Robust Industrial Design in Aeronautics
Author: Charles Hirsch
Publisher: Springer
ISBN: 331977767X
Category : Technology & Engineering
Languages : en
Pages : 799
Book Description
This book covers cutting-edge findings related to uncertainty quantification and optimization under uncertainties (i.e. robust and reliable optimization), with a special emphasis on aeronautics and turbomachinery, although not limited to these fields. It describes new methods for uncertainty quantification, such as non-intrusive polynomial chaos, collocation methods, perturbation methods, as well as adjoint based and multi-level Monte Carlo methods. It includes methods for characterization of most influential uncertainties, as well as formulations for robust and reliable design optimization. A distinctive element of the book is the unique collection of test cases with prescribed uncertainties, which are representative of the current engineering practice of the industrial consortium partners involved in UMRIDA, a level 1 collaborative project within the European Commission's Seventh Framework Programme (FP7). All developed methods are benchmarked against these industrial challenges. Moreover, the book includes a section dedicated to Best Practice Guidelines for uncertainty quantification and robust design optimization, summarizing the findings obtained by the consortium members within the UMRIDA project. All in all, the book offers a authoritative guide to cutting-edge methodologies for uncertainty management in engineering design, covers a wide range of applications and discusses new ideas for future research and interdisciplinary collaborations.
Publisher: Springer
ISBN: 331977767X
Category : Technology & Engineering
Languages : en
Pages : 799
Book Description
This book covers cutting-edge findings related to uncertainty quantification and optimization under uncertainties (i.e. robust and reliable optimization), with a special emphasis on aeronautics and turbomachinery, although not limited to these fields. It describes new methods for uncertainty quantification, such as non-intrusive polynomial chaos, collocation methods, perturbation methods, as well as adjoint based and multi-level Monte Carlo methods. It includes methods for characterization of most influential uncertainties, as well as formulations for robust and reliable design optimization. A distinctive element of the book is the unique collection of test cases with prescribed uncertainties, which are representative of the current engineering practice of the industrial consortium partners involved in UMRIDA, a level 1 collaborative project within the European Commission's Seventh Framework Programme (FP7). All developed methods are benchmarked against these industrial challenges. Moreover, the book includes a section dedicated to Best Practice Guidelines for uncertainty quantification and robust design optimization, summarizing the findings obtained by the consortium members within the UMRIDA project. All in all, the book offers a authoritative guide to cutting-edge methodologies for uncertainty management in engineering design, covers a wide range of applications and discusses new ideas for future research and interdisciplinary collaborations.
Fractional Calculus
Author: Varsha Daftardar-Gejji
Publisher: ALPHA SCIENCE INTERNATIONAL LIMITED
ISBN: 8184874782
Category : Mathematics
Languages : en
Pages : 232
Book Description
FRACTIONAL CALCULUS: Theory and Applications deals with differentiation and integration of arbitrary order. The origin of this subject can be traced back to the end of seventeenth century, the time when Newton and Leibniz developed foundations of differential and integral calculus. Nonetheless, utility and applicability of FC to various branches of science and engineering have been realized only in last few decades. Recent years have witnessed tremendous upsurge in research activities related to the applications of FC in modeling of real-world systems. Unlike the derivatives of integral order, the non-local nature of fractional derivatives correctly models many natural phenomena containing long memory and give more accurate description than their integer counterparts.The present book comprises of contributions from academicians and leading researchers and gives a panoramic overview of various aspects of this subject: Introduction to Fractional Calculus Fractional Differential Equations Fractional Ordered Dynamical Systems Fractional Operators on Fractals Local Fractional Derivatives Fractional Control Systems Fractional Operators and Statistical Distributions Applications to Engineering
Publisher: ALPHA SCIENCE INTERNATIONAL LIMITED
ISBN: 8184874782
Category : Mathematics
Languages : en
Pages : 232
Book Description
FRACTIONAL CALCULUS: Theory and Applications deals with differentiation and integration of arbitrary order. The origin of this subject can be traced back to the end of seventeenth century, the time when Newton and Leibniz developed foundations of differential and integral calculus. Nonetheless, utility and applicability of FC to various branches of science and engineering have been realized only in last few decades. Recent years have witnessed tremendous upsurge in research activities related to the applications of FC in modeling of real-world systems. Unlike the derivatives of integral order, the non-local nature of fractional derivatives correctly models many natural phenomena containing long memory and give more accurate description than their integer counterparts.The present book comprises of contributions from academicians and leading researchers and gives a panoramic overview of various aspects of this subject: Introduction to Fractional Calculus Fractional Differential Equations Fractional Ordered Dynamical Systems Fractional Operators on Fractals Local Fractional Derivatives Fractional Control Systems Fractional Operators and Statistical Distributions Applications to Engineering
Isogeometric Analysis
Author: J. Austin Cottrell
Publisher: John Wiley & Sons
ISBN: 0470749091
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
“The authors are the originators of isogeometric analysis, are excellent scientists and good educators. It is very original. There is no other book on this topic.” —René de Borst, Eindhoven University of Technology Written by leading experts in the field and featuring fully integrated colour throughout, Isogeometric Analysis provides a groundbreaking solution for the integration of CAD and FEA technologies. Tom Hughes and his researchers, Austin Cottrell and Yuri Bazilevs, present their pioneering isogeometric approach, which aims to integrate the two techniques of CAD and FEA using precise NURBS geometry in the FEA application. This technology offers the potential to revolutionise automobile, ship and airplane design and analysis by allowing models to be designed, tested and adjusted in one integrative stage. Providing a systematic approach to the topic, the authors begin with a tutorial introducing the foundations of Isogeometric Analysis, before advancing to a comprehensive coverage of the most recent developments in the technique. The authors offer a clear explanation as to how to add isogeometric capabilities to existing finite element computer programs, demonstrating how to implement and use the technology. Detailed programming examples and datasets are included to impart a thorough knowledge and understanding of the material. Provides examples of different applications, showing the reader how to implement isogeometric models Addresses readers on both sides of the CAD/FEA divide Describes Non-Uniform Rational B-Splines (NURBS) basis functions
Publisher: John Wiley & Sons
ISBN: 0470749091
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
“The authors are the originators of isogeometric analysis, are excellent scientists and good educators. It is very original. There is no other book on this topic.” —René de Borst, Eindhoven University of Technology Written by leading experts in the field and featuring fully integrated colour throughout, Isogeometric Analysis provides a groundbreaking solution for the integration of CAD and FEA technologies. Tom Hughes and his researchers, Austin Cottrell and Yuri Bazilevs, present their pioneering isogeometric approach, which aims to integrate the two techniques of CAD and FEA using precise NURBS geometry in the FEA application. This technology offers the potential to revolutionise automobile, ship and airplane design and analysis by allowing models to be designed, tested and adjusted in one integrative stage. Providing a systematic approach to the topic, the authors begin with a tutorial introducing the foundations of Isogeometric Analysis, before advancing to a comprehensive coverage of the most recent developments in the technique. The authors offer a clear explanation as to how to add isogeometric capabilities to existing finite element computer programs, demonstrating how to implement and use the technology. Detailed programming examples and datasets are included to impart a thorough knowledge and understanding of the material. Provides examples of different applications, showing the reader how to implement isogeometric models Addresses readers on both sides of the CAD/FEA divide Describes Non-Uniform Rational B-Splines (NURBS) basis functions
Generalized Differential and Integral Quadrature
Author: Francesco Tornabene
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 689
Book Description
The main aim of this book is to analyze the mathematical fundamentals and the main features of the Generalized Differential Quadrature (GDQ) and Generalized Integral Quadrature (GIQ) techniques. Furthermore, another interesting aim of the present book is to shown that from the two numerical techniques mentioned above it is possible to derive two different approaches such as the Strong and Weak Finite Element Methods (SFEM and WFEM), that will be used to solve various structural problems and arbitrarily shaped structures. A general approach to the Differential Quadrature is proposed. The weighting coefficients for different basis functions and grid distributions are determined. Furthermore, the expressions of the principal approximating polynomials and grid distributions, available in the literature, are shown. Besides the classic orthogonal polynomials, a new class of basis functions, which depend on the radial distance between the discretization points, is presented. They are known as Radial Basis Functions (or RBFs). The general expressions for the derivative evaluation can be utilized in the local form to reduce the computational cost. From this concept the Local Generalized Differential Quadrature (LGDQ) method is derived. The Generalized Integral Quadrature (GIQ) technique can be used employing several basis functions, without any restriction on the point distributions for the given definition domain. To better underline these concepts some classical numerical integration schemes are reported, such as the trapezoidal rule or the Simpson method. An alternative approach based on Taylor series is also illustrated to approximate integrals. This technique is named as Generalized Taylor-based Integral Quadrature (GTIQ) method. The major structural theories for the analysis of the mechanical behavior of various structures are presented in depth in the book. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. Generally speaking, two formulations of the same system of governing equations can be developed, which are respectively the strong and weak (or variational) formulations. Once the governing equations that rule a generic structural problem are obtained, together with the corresponding boundary conditions, a differential system is written. In particular, the Strong Formulation (SF) of the governing equations is obtained. The differentiability requirement, instead, is reduced through a weighted integral statement if the corresponding Weak Formulation (WF) of the governing equations is developed. Thus, an equivalent integral formulation is derived, starting directly from the previous one. In particular, the formulation in hand is obtained by introducing a Lagrangian approximation of the degrees of freedom of the problem. The need of studying arbitrarily shaped domains or characterized by mechanical and geometrical discontinuities leads to the development of new numerical approaches that divide the structure in finite elements. Then, the strong form or the weak form of the fundamental equations are solved inside each element. The fundamental aspects of this technique, which the author defined respectively Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are presented in the book.
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 689
Book Description
The main aim of this book is to analyze the mathematical fundamentals and the main features of the Generalized Differential Quadrature (GDQ) and Generalized Integral Quadrature (GIQ) techniques. Furthermore, another interesting aim of the present book is to shown that from the two numerical techniques mentioned above it is possible to derive two different approaches such as the Strong and Weak Finite Element Methods (SFEM and WFEM), that will be used to solve various structural problems and arbitrarily shaped structures. A general approach to the Differential Quadrature is proposed. The weighting coefficients for different basis functions and grid distributions are determined. Furthermore, the expressions of the principal approximating polynomials and grid distributions, available in the literature, are shown. Besides the classic orthogonal polynomials, a new class of basis functions, which depend on the radial distance between the discretization points, is presented. They are known as Radial Basis Functions (or RBFs). The general expressions for the derivative evaluation can be utilized in the local form to reduce the computational cost. From this concept the Local Generalized Differential Quadrature (LGDQ) method is derived. The Generalized Integral Quadrature (GIQ) technique can be used employing several basis functions, without any restriction on the point distributions for the given definition domain. To better underline these concepts some classical numerical integration schemes are reported, such as the trapezoidal rule or the Simpson method. An alternative approach based on Taylor series is also illustrated to approximate integrals. This technique is named as Generalized Taylor-based Integral Quadrature (GTIQ) method. The major structural theories for the analysis of the mechanical behavior of various structures are presented in depth in the book. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. Generally speaking, two formulations of the same system of governing equations can be developed, which are respectively the strong and weak (or variational) formulations. Once the governing equations that rule a generic structural problem are obtained, together with the corresponding boundary conditions, a differential system is written. In particular, the Strong Formulation (SF) of the governing equations is obtained. The differentiability requirement, instead, is reduced through a weighted integral statement if the corresponding Weak Formulation (WF) of the governing equations is developed. Thus, an equivalent integral formulation is derived, starting directly from the previous one. In particular, the formulation in hand is obtained by introducing a Lagrangian approximation of the degrees of freedom of the problem. The need of studying arbitrarily shaped domains or characterized by mechanical and geometrical discontinuities leads to the development of new numerical approaches that divide the structure in finite elements. Then, the strong form or the weak form of the fundamental equations are solved inside each element. The fundamental aspects of this technique, which the author defined respectively Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are presented in the book.
The Optimal Homotopy Asymptotic Method
Author: Vasile Marinca
Publisher: Springer
ISBN: 3319153749
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.
Publisher: Springer
ISBN: 3319153749
Category : Technology & Engineering
Languages : en
Pages : 476
Book Description
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.