Author: Nina Opanasivna Virchenko
Publisher: World Scientific
ISBN: 9810243537
Category : Mathematics
Languages : en
Pages : 217
Book Description
The various types of special functions have become essential tools for scientists and engineers. One of the important classes of special functions is of the hypergeometric type. It includes all classical hypergeometric functions such as the well-known Gaussian hypergeometric functions, the Bessel, Macdonald, Legendre, Whittaker, Kummer, Tricomi and Wright functions, the generalized hypergeometric functions ?Fq, Meijer's G-function, Fox's H-function, etc.Application of the new special functions allows one to increase considerably the number of problems whose solutions are found in a closed form, to examine these solutions, and to investigate the relationships between different classes of the special functions.This book deals with the theory and applications of generalized associated Legendre functions of the first and the second kind, Pm, n?(z) and Qm, n?(z), which are important representatives of the hypergeometric functions. They occur as generalizations of classical Legendre functions of the first and the second kind respectively. The authors use various methods of contour integration to obtain important properties of the generalized associated Legnedre functions as their series representations, asymptotic formulas in a neighborhood of singular points, zero properties, connection with Jacobi functions, Bessel functions, elliptic integrals and incomplete beta functions.The book also presents the theory of factorization and composition structure of integral operators associated with the generalized associated Legendre function, the fractional integro-differential properties of the functions Pm, n?(z) and Qm, n?(z), the classes of dual and triple integral equations associated with the function Pm, n-1/2+i?(chà) etc.
Generalized Associated Legendre Functions and Their Applications
Author: Nina Opanasivna Virchenko
Publisher: World Scientific
ISBN: 9812811788
Category : Mathematics
Languages : en
Pages : 217
Book Description
The various types of special functions have become essential tools for scientists and engineers. One of the important classes of special functions is of the hypergeometric type. It includes all classical hypergeometric functions such as the well-known Gaussian hypergeometric functions, the Bessel, Macdonald, Legendre, Whittaker, Kummer, Tricomi and Wright functions, the generalized hypergeometric functions ? Fq, Meijer's G -function, Fox's H -function, etc. Application of the new special functions allows one to increase considerably the number of problems whose solutions are found in a closed form, to examine these solutions, and to investigate the relationships between different classes of the special functions. This book deals with the theory and applications of generalized associated Legendre functions of the first and the second kind, P m, n ? ( z ) and Q m, n ? ( z ), which are important representatives of the hypergeometric functions. They occur as generalizations of classical Legendre functions of the first and the second kind respectively. The authors use various methods of contour integration to obtain important properties of the generalized associated Legnedre functions as their series representations, asymptotic formulas in a neighborhood of singular points, zero properties, connection with Jacobi functions, Bessel functions, elliptic integrals and incomplete beta functions. The book also presents the theory of factorization and composition structure of integral operators associated with the generalized associated Legendre function, the fractional integro-differential properties of the functions P m, n ? ( z ) and Q m, n ? ( z ), the classes of dual and triple integral equations associated with the function P m, n -1/2+i? (cha) etc. Contents: A General Information on Legendre Functions; The Generalized Associated Legendre Functions; The Series Representations of the Generalized Associated Legendre Functions; Relations Between Different Solutions of the Generalized Legendre Equation. Wronskians of Linearly Independent Solutions; Relations Between Contiguous Generalized Associated Legendre Functions; Differential Operators Generated by the Generalized Associated Legendre Equation; Asymptotic Formulas for the Generalized Associated Legendre Functions in a Neighborhood of Singular Points; Asymptotic Representations of the Generalized Associated Legendre Functions as the Functions of Parameters; Integral Representations of the Generalized Associated Legendre Functions of the First Kind; Integral Representations of the Generalized Associated Legendre Functions of the Second Kind; Zeros of the Generalized Associated Legendre Functions; Connection of the Generalized Associated Legendre Functions with the Jacobi Functions; and other topics. Readership: Graduate students and researchers in mathematics, physics and engineer
Publisher: World Scientific
ISBN: 9812811788
Category : Mathematics
Languages : en
Pages : 217
Book Description
The various types of special functions have become essential tools for scientists and engineers. One of the important classes of special functions is of the hypergeometric type. It includes all classical hypergeometric functions such as the well-known Gaussian hypergeometric functions, the Bessel, Macdonald, Legendre, Whittaker, Kummer, Tricomi and Wright functions, the generalized hypergeometric functions ? Fq, Meijer's G -function, Fox's H -function, etc. Application of the new special functions allows one to increase considerably the number of problems whose solutions are found in a closed form, to examine these solutions, and to investigate the relationships between different classes of the special functions. This book deals with the theory and applications of generalized associated Legendre functions of the first and the second kind, P m, n ? ( z ) and Q m, n ? ( z ), which are important representatives of the hypergeometric functions. They occur as generalizations of classical Legendre functions of the first and the second kind respectively. The authors use various methods of contour integration to obtain important properties of the generalized associated Legnedre functions as their series representations, asymptotic formulas in a neighborhood of singular points, zero properties, connection with Jacobi functions, Bessel functions, elliptic integrals and incomplete beta functions. The book also presents the theory of factorization and composition structure of integral operators associated with the generalized associated Legendre function, the fractional integro-differential properties of the functions P m, n ? ( z ) and Q m, n ? ( z ), the classes of dual and triple integral equations associated with the function P m, n -1/2+i? (cha) etc. Contents: A General Information on Legendre Functions; The Generalized Associated Legendre Functions; The Series Representations of the Generalized Associated Legendre Functions; Relations Between Different Solutions of the Generalized Legendre Equation. Wronskians of Linearly Independent Solutions; Relations Between Contiguous Generalized Associated Legendre Functions; Differential Operators Generated by the Generalized Associated Legendre Equation; Asymptotic Formulas for the Generalized Associated Legendre Functions in a Neighborhood of Singular Points; Asymptotic Representations of the Generalized Associated Legendre Functions as the Functions of Parameters; Integral Representations of the Generalized Associated Legendre Functions of the First Kind; Integral Representations of the Generalized Associated Legendre Functions of the Second Kind; Zeros of the Generalized Associated Legendre Functions; Connection of the Generalized Associated Legendre Functions with the Jacobi Functions; and other topics. Readership: Graduate students and researchers in mathematics, physics and engineer
Generalized Associated Legendre Functions and Their Applications
Author: Nina Opanasivna Virchenko
Publisher: World Scientific
ISBN: 9810243537
Category : Mathematics
Languages : en
Pages : 217
Book Description
The various types of special functions have become essential tools for scientists and engineers. One of the important classes of special functions is of the hypergeometric type. It includes all classical hypergeometric functions such as the well-known Gaussian hypergeometric functions, the Bessel, Macdonald, Legendre, Whittaker, Kummer, Tricomi and Wright functions, the generalized hypergeometric functions ?Fq, Meijer's G-function, Fox's H-function, etc.Application of the new special functions allows one to increase considerably the number of problems whose solutions are found in a closed form, to examine these solutions, and to investigate the relationships between different classes of the special functions.This book deals with the theory and applications of generalized associated Legendre functions of the first and the second kind, Pm, n?(z) and Qm, n?(z), which are important representatives of the hypergeometric functions. They occur as generalizations of classical Legendre functions of the first and the second kind respectively. The authors use various methods of contour integration to obtain important properties of the generalized associated Legnedre functions as their series representations, asymptotic formulas in a neighborhood of singular points, zero properties, connection with Jacobi functions, Bessel functions, elliptic integrals and incomplete beta functions.The book also presents the theory of factorization and composition structure of integral operators associated with the generalized associated Legendre function, the fractional integro-differential properties of the functions Pm, n?(z) and Qm, n?(z), the classes of dual and triple integral equations associated with the function Pm, n-1/2+i?(chà) etc.
Publisher: World Scientific
ISBN: 9810243537
Category : Mathematics
Languages : en
Pages : 217
Book Description
The various types of special functions have become essential tools for scientists and engineers. One of the important classes of special functions is of the hypergeometric type. It includes all classical hypergeometric functions such as the well-known Gaussian hypergeometric functions, the Bessel, Macdonald, Legendre, Whittaker, Kummer, Tricomi and Wright functions, the generalized hypergeometric functions ?Fq, Meijer's G-function, Fox's H-function, etc.Application of the new special functions allows one to increase considerably the number of problems whose solutions are found in a closed form, to examine these solutions, and to investigate the relationships between different classes of the special functions.This book deals with the theory and applications of generalized associated Legendre functions of the first and the second kind, Pm, n?(z) and Qm, n?(z), which are important representatives of the hypergeometric functions. They occur as generalizations of classical Legendre functions of the first and the second kind respectively. The authors use various methods of contour integration to obtain important properties of the generalized associated Legnedre functions as their series representations, asymptotic formulas in a neighborhood of singular points, zero properties, connection with Jacobi functions, Bessel functions, elliptic integrals and incomplete beta functions.The book also presents the theory of factorization and composition structure of integral operators associated with the generalized associated Legendre function, the fractional integro-differential properties of the functions Pm, n?(z) and Qm, n?(z), the classes of dual and triple integral equations associated with the function Pm, n-1/2+i?(chà) etc.
Integral Transforms of Generalized Functions and Their Applications
Author: Ram Shankar Pathak
Publisher: Routledge
ISBN: 135156269X
Category : History
Languages : en
Pages : 432
Book Description
For those who have a background in advanced calculus, elementary topology and functional analysis - from applied mathematicians and engineers to physicists - researchers and graduate students alike - this work provides a comprehensive analysis of the many important integral transforms and renders particular attention to all of the technical aspects of the subject. The author presents the last two decades of research and includes important results from other works.
Publisher: Routledge
ISBN: 135156269X
Category : History
Languages : en
Pages : 432
Book Description
For those who have a background in advanced calculus, elementary topology and functional analysis - from applied mathematicians and engineers to physicists - researchers and graduate students alike - this work provides a comprehensive analysis of the many important integral transforms and renders particular attention to all of the technical aspects of the subject. The author presents the last two decades of research and includes important results from other works.
3-D Spinors, Spin-Weighted Functions and their Applications
Author: Gerardo F. Torres del Castillo
Publisher: Springer Science & Business Media
ISBN: 0817681469
Category : Science
Languages : en
Pages : 256
Book Description
This book on the theory of three-dimensional spinors and their applications fills an important gap in the literature. It gives an introductory treatment of spinors. From the reviews: "Gathers much of what can be done with 3-D spinors in an easy-to-read, self-contained form designed for applications that will supplement many available spinor treatments. The book...should be appealing to graduate students and researchers in relativity and mathematical physics." -—MATHEMATICAL REVIEWS
Publisher: Springer Science & Business Media
ISBN: 0817681469
Category : Science
Languages : en
Pages : 256
Book Description
This book on the theory of three-dimensional spinors and their applications fills an important gap in the literature. It gives an introductory treatment of spinors. From the reviews: "Gathers much of what can be done with 3-D spinors in an easy-to-read, self-contained form designed for applications that will supplement many available spinor treatments. The book...should be appealing to graduate students and researchers in relativity and mathematical physics." -—MATHEMATICAL REVIEWS
The H-Function
Author: A.M. Mathai
Publisher: Springer Science & Business Media
ISBN: 1441909168
Category : Science
Languages : en
Pages : 276
Book Description
TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.
Publisher: Springer Science & Business Media
ISBN: 1441909168
Category : Science
Languages : en
Pages : 276
Book Description
TheH-function or popularly known in the literature as Fox’sH-function has recently found applications in a large variety of problems connected with reaction, diffusion, reaction–diffusion, engineering and communication, fractional differ- tial and integral equations, many areas of theoretical physics, statistical distribution theory, etc. One of the standard books and most cited book on the topic is the 1978 book of Mathai and Saxena. Since then, the subject has grown a lot, mainly in the elds of applications. Due to popular demand, the authors were requested to - grade and bring out a revised edition of the 1978 book. It was decided to bring out a new book, mostly dealing with recent applications in statistical distributions, pa- way models, nonextensive statistical mechanics, astrophysics problems, fractional calculus, etc. and to make use of the expertise of Hans J. Haubold in astrophysics area also. It was decided to con ne the discussion toH-function of one scalar variable only. Matrix variable cases and many variable cases are not discussed in detail, but an insight into these areas is given. When going from one variable to many variables, there is nothing called a unique bivariate or multivariate analogue of a givenfunction. Whatever be the criteria used, there may be manydifferentfunctions quali ed to be bivariate or multivariate analogues of a given univariate function. Some of the bivariate and multivariateH-functions, currently in the literature, are also questioned by many authors.
Transmutation Operators and Applications
Author: Vladislav V. Kravchenko
Publisher: Springer Nature
ISBN: 303035914X
Category : Mathematics
Languages : en
Pages : 685
Book Description
Transmutation operators in differential equations and spectral theory can be used to reveal the relations between different problems, and often make it possible to transform difficult problems into easier ones. Accordingly, they represent an important mathematical tool in the theory of inverse and scattering problems, of ordinary and partial differential equations, integral transforms and equations, special functions, harmonic analysis, potential theory, and generalized analytic functions. This volume explores recent advances in the construction and applications of transmutation operators, while also sharing some interesting historical notes on the subject.
Publisher: Springer Nature
ISBN: 303035914X
Category : Mathematics
Languages : en
Pages : 685
Book Description
Transmutation operators in differential equations and spectral theory can be used to reveal the relations between different problems, and often make it possible to transform difficult problems into easier ones. Accordingly, they represent an important mathematical tool in the theory of inverse and scattering problems, of ordinary and partial differential equations, integral transforms and equations, special functions, harmonic analysis, potential theory, and generalized analytic functions. This volume explores recent advances in the construction and applications of transmutation operators, while also sharing some interesting historical notes on the subject.
Introduction to Radon Transforms
Author: Boris Rubin
Publisher: Cambridge University Press
ISBN: 0521854598
Category : Mathematics
Languages : en
Pages : 595
Book Description
A comprehensive introduction to basic operators of integral geometry and the relevant harmonic analysis for students and researchers.
Publisher: Cambridge University Press
ISBN: 0521854598
Category : Mathematics
Languages : en
Pages : 595
Book Description
A comprehensive introduction to basic operators of integral geometry and the relevant harmonic analysis for students and researchers.
Riccati Differential Equations
Author: Reid
Publisher: Academic Press
ISBN: 0080955959
Category : Computers
Languages : en
Pages : 227
Book Description
Riccati Differential Equations
Publisher: Academic Press
ISBN: 0080955959
Category : Computers
Languages : en
Pages : 227
Book Description
Riccati Differential Equations
Special Functions
Author: Refaat El Attar
Publisher: Lulu.com
ISBN: 0557037638
Category : Technology & Engineering
Languages : en
Pages : 311
Book Description
(Hardcover). This book is written to provide an easy to follow study on the subject of Special Functions and Orthogonal Polynomials. It is written in such a way that it can be used as a self study text. Basic knowledge of calculus and differential equations is needed. The book is intended to help students in engineering, physics and applied sciences understand various aspects of Special Functions and Orthogonal Polynomials that very often occur in engineering, physics, mathematics and applied sciences. The book is organized in chapters that are in a sense self contained. Chapter 1 deals with series solutions of Differential Equations. Gamma and Beta functions are studied in Chapter 2 together with other functions that are defined by integrals. Legendre Polynomials and Functions are studied in Chapter 3. Chapters 4 and 5 deal with Hermite, Laguerre and other Orthogonal Polynomials. A detailed treatise of Bessel Function in given in Chapter 6.
Publisher: Lulu.com
ISBN: 0557037638
Category : Technology & Engineering
Languages : en
Pages : 311
Book Description
(Hardcover). This book is written to provide an easy to follow study on the subject of Special Functions and Orthogonal Polynomials. It is written in such a way that it can be used as a self study text. Basic knowledge of calculus and differential equations is needed. The book is intended to help students in engineering, physics and applied sciences understand various aspects of Special Functions and Orthogonal Polynomials that very often occur in engineering, physics, mathematics and applied sciences. The book is organized in chapters that are in a sense self contained. Chapter 1 deals with series solutions of Differential Equations. Gamma and Beta functions are studied in Chapter 2 together with other functions that are defined by integrals. Legendre Polynomials and Functions are studied in Chapter 3. Chapters 4 and 5 deal with Hermite, Laguerre and other Orthogonal Polynomials. A detailed treatise of Bessel Function in given in Chapter 6.
Advances in Dual Integral Equations
Author: B.N. Mandal
Publisher: Routledge
ISBN: 1351468359
Category : Mathematics
Languages : en
Pages : 233
Book Description
The effectiveness of dual integral equations for handling mixed boundary value problems has established them as an important tool for applied mathematicians. Their many applications in mathematical physics have prompted extensive research over the last 25 years, and many researchers have made significant contributions to the methodology of solving and to the applications of dual integral equations. However, until now, much of this work has been available only in the form of research papers scattered throughout different journals. In Advances in Dual Integral Equations, the authors systematically present some of the recent developments in dual integral equations involving various special functions as kernel. They examine dual integral equations with Bessel, Legendre, and trigonometric functions as kernel plus dual integral equations involving inverse Mellin transforms. These can be particularly useful in studying certain mixed boundary value problems involving homogeneous media in continuum mechanics. However, when dealing with problems involving non-homogenous media, the corresponding equations may have different kernels. This application prompts the authors to conclude with a discussion of hybrid dual integral equations-mixed kernels with generalized associated Legendre functions and mixed kernels involving Bessel functions. Researchers in the theory of elasticity, fluid dynamics, and mathematical physics will find Advances in Dual Integral Equations a concise, one-stop resource for recent work addressing special functions as kernel.
Publisher: Routledge
ISBN: 1351468359
Category : Mathematics
Languages : en
Pages : 233
Book Description
The effectiveness of dual integral equations for handling mixed boundary value problems has established them as an important tool for applied mathematicians. Their many applications in mathematical physics have prompted extensive research over the last 25 years, and many researchers have made significant contributions to the methodology of solving and to the applications of dual integral equations. However, until now, much of this work has been available only in the form of research papers scattered throughout different journals. In Advances in Dual Integral Equations, the authors systematically present some of the recent developments in dual integral equations involving various special functions as kernel. They examine dual integral equations with Bessel, Legendre, and trigonometric functions as kernel plus dual integral equations involving inverse Mellin transforms. These can be particularly useful in studying certain mixed boundary value problems involving homogeneous media in continuum mechanics. However, when dealing with problems involving non-homogenous media, the corresponding equations may have different kernels. This application prompts the authors to conclude with a discussion of hybrid dual integral equations-mixed kernels with generalized associated Legendre functions and mixed kernels involving Bessel functions. Researchers in the theory of elasticity, fluid dynamics, and mathematical physics will find Advances in Dual Integral Equations a concise, one-stop resource for recent work addressing special functions as kernel.