Author: Meike S. Andersson
Publisher: JHU Press
ISBN: 0801893143
Category : Science
Languages : en
Pages : 605
Book Description
Reviewing the relevant scientific and technical literature, this work summarizes the current state-of-the-art knowledge related to gene flow and introgression (the permanent incorporation of genetic information from one set of differentiated populations into another) between genetically modified crops and their wild relatives. They analyze the biological framework for protecting the genetic integrity of indigenous wild relatives of crops in centers of crop origin and diversity, focusing on the issues of emission, dispersal, and deposition of pollen and/or seed; the likelihood and extent of gene flow from crops to wild relatives; and stabilization and the spread of traits in wild species. The material is organized into crop chapters, each of which covers general biological information of the crop; the most important crop wild relatives together with information about their ploidy levels, diverse genomes, centers of origin, and geographic distribution; the crop's potential for hybridization with its wild relatives; pollen flow studies related to pollen dispersal distances and hybridization rates; the current state of the genetic modification technology regarding that crop; and research gaps. The crop chapters discuss banana and plantain; barley; canola and oilseed rape; cassava, manioc, and yucca; chickpea; common bean; cotton; cowpea; finger millet; maize and corn; oat; peanut and groundnut; pearl millet; pigeonpea; potato; rice; sorghum; soybean; sweet potato, batata, and camote; and wheat and bread wheat.
Gene Flow Between Crops and Their Wild Relatives
Author: Meike S. Andersson
Publisher: JHU Press
ISBN: 0801893143
Category : Science
Languages : en
Pages : 605
Book Description
Reviewing the relevant scientific and technical literature, this work summarizes the current state-of-the-art knowledge related to gene flow and introgression (the permanent incorporation of genetic information from one set of differentiated populations into another) between genetically modified crops and their wild relatives. They analyze the biological framework for protecting the genetic integrity of indigenous wild relatives of crops in centers of crop origin and diversity, focusing on the issues of emission, dispersal, and deposition of pollen and/or seed; the likelihood and extent of gene flow from crops to wild relatives; and stabilization and the spread of traits in wild species. The material is organized into crop chapters, each of which covers general biological information of the crop; the most important crop wild relatives together with information about their ploidy levels, diverse genomes, centers of origin, and geographic distribution; the crop's potential for hybridization with its wild relatives; pollen flow studies related to pollen dispersal distances and hybridization rates; the current state of the genetic modification technology regarding that crop; and research gaps. The crop chapters discuss banana and plantain; barley; canola and oilseed rape; cassava, manioc, and yucca; chickpea; common bean; cotton; cowpea; finger millet; maize and corn; oat; peanut and groundnut; pearl millet; pigeonpea; potato; rice; sorghum; soybean; sweet potato, batata, and camote; and wheat and bread wheat.
Publisher: JHU Press
ISBN: 0801893143
Category : Science
Languages : en
Pages : 605
Book Description
Reviewing the relevant scientific and technical literature, this work summarizes the current state-of-the-art knowledge related to gene flow and introgression (the permanent incorporation of genetic information from one set of differentiated populations into another) between genetically modified crops and their wild relatives. They analyze the biological framework for protecting the genetic integrity of indigenous wild relatives of crops in centers of crop origin and diversity, focusing on the issues of emission, dispersal, and deposition of pollen and/or seed; the likelihood and extent of gene flow from crops to wild relatives; and stabilization and the spread of traits in wild species. The material is organized into crop chapters, each of which covers general biological information of the crop; the most important crop wild relatives together with information about their ploidy levels, diverse genomes, centers of origin, and geographic distribution; the crop's potential for hybridization with its wild relatives; pollen flow studies related to pollen dispersal distances and hybridization rates; the current state of the genetic modification technology regarding that crop; and research gaps. The crop chapters discuss banana and plantain; barley; canola and oilseed rape; cassava, manioc, and yucca; chickpea; common bean; cotton; cowpea; finger millet; maize and corn; oat; peanut and groundnut; pearl millet; pigeonpea; potato; rice; sorghum; soybean; sweet potato, batata, and camote; and wheat and bread wheat.
Gene Flow
Author: Wei Wei (Botanist)
Publisher: Cab International
ISBN: 9781789247497
Category : Biosafety
Languages : en
Pages : 0
Book Description
"This book discusses gene flow of transgenes from genetically modified organisms into nature, with a focus on monitoring, modelling and mitigation. It includes both scientific reviews and perspectives on gene flow and experimental case studies, for example, gene flow of soyabean and poplar"--
Publisher: Cab International
ISBN: 9781789247497
Category : Biosafety
Languages : en
Pages : 0
Book Description
"This book discusses gene flow of transgenes from genetically modified organisms into nature, with a focus on monitoring, modelling and mitigation. It includes both scientific reviews and perspectives on gene flow and experimental case studies, for example, gene flow of soyabean and poplar"--
Population Genetics and Microevolutionary Theory
Author: Alan R. Templeton
Publisher: John Wiley & Sons
ISBN: 0470047216
Category : Science
Languages : en
Pages : 720
Book Description
The advances made possible by the development of molecular techniques have in recent years revolutionized quantitative genetics and its relevance for population genetics. Population Genetics and Microevolutionary Theory takes a modern approach to population genetics, incorporating modern molecular biology, species-level evolutionary biology, and a thorough acknowledgment of quantitative genetics as the theoretical basis for population genetics. Logically organized into three main sections on population structure and history, genotype-phenotype interactions, and selection/adaptation Extensive use of real examples to illustrate concepts Written in a clear and accessible manner and devoid of complex mathematical equations Includes the author's introduction to background material as well as a conclusion for a handy overview of the field and its modern applications Each chapter ends with a set of review questions and answers Offers helpful general references and Internet links
Publisher: John Wiley & Sons
ISBN: 0470047216
Category : Science
Languages : en
Pages : 720
Book Description
The advances made possible by the development of molecular techniques have in recent years revolutionized quantitative genetics and its relevance for population genetics. Population Genetics and Microevolutionary Theory takes a modern approach to population genetics, incorporating modern molecular biology, species-level evolutionary biology, and a thorough acknowledgment of quantitative genetics as the theoretical basis for population genetics. Logically organized into three main sections on population structure and history, genotype-phenotype interactions, and selection/adaptation Extensive use of real examples to illustrate concepts Written in a clear and accessible manner and devoid of complex mathematical equations Includes the author's introduction to background material as well as a conclusion for a handy overview of the field and its modern applications Each chapter ends with a set of review questions and answers Offers helpful general references and Internet links
Geographical Genetics (MPB-38)
Author: Bryan K. Epperson
Publisher: Princeton University Press
ISBN: 1400835623
Category : Science
Languages : en
Pages : 376
Book Description
Population genetics has made great strides in applying statistical analysis and mathematical modeling to understand how genes mutate and spread through populations over time. But real populations also live in space. Streams, mountains, and other geographic features often divide populations, limit migration, or otherwise influence gene flow. This book rigorously examines the processes that determine geographic patterns of genetic variation, providing a comprehensive guide to their study and interpretation. Geographical Genetics has a unique focus on the mathematical relationships of spatial statistical measures of patterns to stochastic processes. It also develops the probability and distribution theory of various spatial statistics for analysis of population genetic data, detailing exact methods for using various spatial features to make precise inferences about migration, natural selection, and other dynamic forces. The book also reviews the experimental literature on the types of spatial patterns of genetic variation found within and among populations. And it makes an unprecedented strong connection between observed measures of spatial patterns and those predicted theoretically. Along the way, it introduces readers to the mathematics of spatial statistics, applications to specific population genetic systems, and the relationship between the mathematics of space-time processes and the formal theory of geographical genetics. Written by a leading authority, this is the first comprehensive treatment of geographical genetics. It is a much-needed guide to the theory, techniques, and applications of a field that will play an increasingly important role in population biology and ecology.
Publisher: Princeton University Press
ISBN: 1400835623
Category : Science
Languages : en
Pages : 376
Book Description
Population genetics has made great strides in applying statistical analysis and mathematical modeling to understand how genes mutate and spread through populations over time. But real populations also live in space. Streams, mountains, and other geographic features often divide populations, limit migration, or otherwise influence gene flow. This book rigorously examines the processes that determine geographic patterns of genetic variation, providing a comprehensive guide to their study and interpretation. Geographical Genetics has a unique focus on the mathematical relationships of spatial statistical measures of patterns to stochastic processes. It also develops the probability and distribution theory of various spatial statistics for analysis of population genetic data, detailing exact methods for using various spatial features to make precise inferences about migration, natural selection, and other dynamic forces. The book also reviews the experimental literature on the types of spatial patterns of genetic variation found within and among populations. And it makes an unprecedented strong connection between observed measures of spatial patterns and those predicted theoretically. Along the way, it introduces readers to the mathematics of spatial statistics, applications to specific population genetic systems, and the relationship between the mathematics of space-time processes and the formal theory of geographical genetics. Written by a leading authority, this is the first comprehensive treatment of geographical genetics. It is a much-needed guide to the theory, techniques, and applications of a field that will play an increasingly important role in population biology and ecology.
Geographic Variation, Speciation and Clines. (MPB-10), Volume 10
Author: John A. Endler
Publisher: Princeton University Press
ISBN: 0691209456
Category : Science
Languages : en
Pages : 262
Book Description
Geographic Variation, Speciation and Clines explores the origins and development of geographic variation, divergence, and speciation. In particular it is concerned with genetic divergence as it is usually found on continents, among groups of populations isolated only by distance. Although earlier writers on this topic considered the effects of geography and dispersal, intense geographic differentiation and speciation were thought to require complete isolation. Professor Endler shows how geographic differentiation and speciation may develop in spite of continuous gene flow. Following a review of the diverse and scattered literature on gene flow and population differentiation, the author discusses the relationships among gene flow, dispersal, and migration. He then summarizes the factors which limit the geographic extent of gene flow, and those which allow steep clines to develop in the absence of barriers to gene flow. His analysis draws on examples from the field, experiments, and single- and multiple-locus models. The mechanism and conditions for parapatric speciation are presented: steepening clines, development into hybrid zones, and the evolution of sexual isolation. In the final chapter the author considers the interpretation of natural clines and the associated geographic patterns of subspecies and species.
Publisher: Princeton University Press
ISBN: 0691209456
Category : Science
Languages : en
Pages : 262
Book Description
Geographic Variation, Speciation and Clines explores the origins and development of geographic variation, divergence, and speciation. In particular it is concerned with genetic divergence as it is usually found on continents, among groups of populations isolated only by distance. Although earlier writers on this topic considered the effects of geography and dispersal, intense geographic differentiation and speciation were thought to require complete isolation. Professor Endler shows how geographic differentiation and speciation may develop in spite of continuous gene flow. Following a review of the diverse and scattered literature on gene flow and population differentiation, the author discusses the relationships among gene flow, dispersal, and migration. He then summarizes the factors which limit the geographic extent of gene flow, and those which allow steep clines to develop in the absence of barriers to gene flow. His analysis draws on examples from the field, experiments, and single- and multiple-locus models. The mechanism and conditions for parapatric speciation are presented: steepening clines, development into hybrid zones, and the evolution of sexual isolation. In the final chapter the author considers the interpretation of natural clines and the associated geographic patterns of subspecies and species.
Genetic Management of Fragmented Animal and Plant Populations
Author: Richard Frankham
Publisher: Oxford University Press
ISBN: 0198783396
Category : Biodiversity
Languages : en
Pages : 426
Book Description
One of the greatest unmet challenges in conservation biology is the genetic management of fragmented populations of threatened animal and plant species. More than a million small, isolated, population fragments of threatened species are likely suffering inbreeding depression and loss of evolutionary potential, resulting in elevated extinction risks. Although these effects can often be reversed by re-establishing gene flow between population fragments, managers very rarely do this. On the contrary, genetic methods are used mainly to document genetic differentiation among populations, with most studies concluding that genetically differentiated populations should be managed separately, thereby isolating them yet further and dooming many to eventual extinction Many small population fragments are going extinct principally for genetic reasons. Although the rapidly advancing field of molecular genetics is continually providing new tools to measure the extent of population fragmentation and its genetic consequences, adequate guidance on how to use these data for effective conservation is still lacking. This accessible, authoritative text is aimed at senior undergraduate and graduate students interested in conservation biology, conservation genetics, and wildlife management. It will also be of particular relevance to conservation practitioners and natural resource managers, as well as a broader academic audience of conservation biologists and evolutionary ecologists.
Publisher: Oxford University Press
ISBN: 0198783396
Category : Biodiversity
Languages : en
Pages : 426
Book Description
One of the greatest unmet challenges in conservation biology is the genetic management of fragmented populations of threatened animal and plant species. More than a million small, isolated, population fragments of threatened species are likely suffering inbreeding depression and loss of evolutionary potential, resulting in elevated extinction risks. Although these effects can often be reversed by re-establishing gene flow between population fragments, managers very rarely do this. On the contrary, genetic methods are used mainly to document genetic differentiation among populations, with most studies concluding that genetically differentiated populations should be managed separately, thereby isolating them yet further and dooming many to eventual extinction Many small population fragments are going extinct principally for genetic reasons. Although the rapidly advancing field of molecular genetics is continually providing new tools to measure the extent of population fragmentation and its genetic consequences, adequate guidance on how to use these data for effective conservation is still lacking. This accessible, authoritative text is aimed at senior undergraduate and graduate students interested in conservation biology, conservation genetics, and wildlife management. It will also be of particular relevance to conservation practitioners and natural resource managers, as well as a broader academic audience of conservation biologists and evolutionary ecologists.
Genome Chaos
Author: Henry H. Heng
Publisher: Academic Press
ISBN: 0128136367
Category : Medical
Languages : en
Pages : 564
Book Description
Genome Chaos: Rethinking Genetics, Evolution, and Molecular Medicine transports readers from Mendelian Genetics to 4D-genomics, building a case for genes and genomes as distinct biological entities, and positing that the genome, rather than individual genes, defines system inheritance and represents a clear unit of selection for macro-evolution. In authoring this thought-provoking text, Dr. Heng invigorates fresh discussions in genome theory and helps readers reevaluate their current understanding of human genetics, evolution, and new pathways for advancing molecular and precision medicine. - Bridges basic research and clinical application and provides a foundation for re-examining the results of large-scale omics studies and advancing molecular medicine - Gathers the most pressing questions in genomic and cytogenomic research - Offers alternative explanations to timely puzzles in the field - Contains eight evidence-based chapters that discuss 4d-genomics, genes and genomes as distinct biological entities, genome chaos and macro-cellular evolution, evolutionary cytogenetics and cancer, chromosomal coding and fuzzy inheritance, and more
Publisher: Academic Press
ISBN: 0128136367
Category : Medical
Languages : en
Pages : 564
Book Description
Genome Chaos: Rethinking Genetics, Evolution, and Molecular Medicine transports readers from Mendelian Genetics to 4D-genomics, building a case for genes and genomes as distinct biological entities, and positing that the genome, rather than individual genes, defines system inheritance and represents a clear unit of selection for macro-evolution. In authoring this thought-provoking text, Dr. Heng invigorates fresh discussions in genome theory and helps readers reevaluate their current understanding of human genetics, evolution, and new pathways for advancing molecular and precision medicine. - Bridges basic research and clinical application and provides a foundation for re-examining the results of large-scale omics studies and advancing molecular medicine - Gathers the most pressing questions in genomic and cytogenomic research - Offers alternative explanations to timely puzzles in the field - Contains eight evidence-based chapters that discuss 4d-genomics, genes and genomes as distinct biological entities, genome chaos and macro-cellular evolution, evolutionary cytogenetics and cancer, chromosomal coding and fuzzy inheritance, and more
Reproductive Ecology of Flowering Plants: Patterns and Processes
Author: Rajesh Tandon
Publisher: Springer Nature
ISBN: 9811542104
Category : Science
Languages : en
Pages : 413
Book Description
Sexual reproduction is the predominant mode of perpetuation for flowering plant species. Investigating the reproductive strategies of plants has grown to become a vast area of research and, in crop plants, covers events from flowering to fruit and seed development; in wild species, it extends up to seed dispersal and seedling recruitment. Thus, reproduction determines the extent of yield in crop plants and, in wild plants, also determines the efficacy of recruiting new adults to the population, making this field important both from fundamental and applied plant biology perspectives. Moreover, in light of the growing concerns regarding food and nutritional security for the growing population and preserving biological diversity, reproductive biology of flowering plants has acquired special significance. Extensive studies on various facets of reproduction are being carried out around the world. However, these studies are scattered across research journals and reviews from diverse areas of biology. The present volume covers the whole spectrum of reproductive ecology, from phenology and floral biology, to sexuality and pollination biology/ecology including floral rewards, breeding systems, apomixis and seed dispersal. In turn, transgene flow, its biosafety and mitigation approaches, and the ‘global pollinator crisis’, which has become a major international concern in light of the urgent need to sustain crop yield and biodiversity, are discussed in detail. Given its scope, the book offers a valuable resource for students, teachers and researchers of botany, zoology, ecology, agriculture and forestry, as well as conservation biologists.
Publisher: Springer Nature
ISBN: 9811542104
Category : Science
Languages : en
Pages : 413
Book Description
Sexual reproduction is the predominant mode of perpetuation for flowering plant species. Investigating the reproductive strategies of plants has grown to become a vast area of research and, in crop plants, covers events from flowering to fruit and seed development; in wild species, it extends up to seed dispersal and seedling recruitment. Thus, reproduction determines the extent of yield in crop plants and, in wild plants, also determines the efficacy of recruiting new adults to the population, making this field important both from fundamental and applied plant biology perspectives. Moreover, in light of the growing concerns regarding food and nutritional security for the growing population and preserving biological diversity, reproductive biology of flowering plants has acquired special significance. Extensive studies on various facets of reproduction are being carried out around the world. However, these studies are scattered across research journals and reviews from diverse areas of biology. The present volume covers the whole spectrum of reproductive ecology, from phenology and floral biology, to sexuality and pollination biology/ecology including floral rewards, breeding systems, apomixis and seed dispersal. In turn, transgene flow, its biosafety and mitigation approaches, and the ‘global pollinator crisis’, which has become a major international concern in light of the urgent need to sustain crop yield and biodiversity, are discussed in detail. Given its scope, the book offers a valuable resource for students, teachers and researchers of botany, zoology, ecology, agriculture and forestry, as well as conservation biologists.
In the Light of Evolution
Author: National Academy of Sciences
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 388
Book Description
The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 388
Book Description
The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.
Population Genomics
Author: Om P. Rajora
Publisher: Springer
ISBN: 3030045897
Category : Science
Languages : en
Pages : 824
Book Description
Population genomics has revolutionized various disciplines of biology including population, evolutionary, ecological and conservation genetics, plant and animal breeding, human health, medicine and pharmacology by allowing to address novel and long-standing questions with unprecedented power and accuracy. It employs large-scale or genome-wide genetic information and bioinformatics to address various fundamental and applied aspects in biology and related disciplines, and provides a comprehensive genome-wide perspective and new insights that were not possible before. These advances have become possible due to the development of new and low-cost sequencing and genotyping technologies and novel statistical approaches and software, bioinformatics tools, and models. Population genomics is tremendously advancing our understanding the roles of evolutionary processes, such as mutation, genetic drift, gene flow, and natural selection, in shaping up genetic variation at individual loci and across the genome and populations; improving the assessment of population genetic parameters or processes such as adaptive evolution, effective population size, gene flow, admixture, inbreeding and outbreeding depression, demography, and biogeography; resolving evolutionary histories and phylogenetic relationships of extant, ancient and extinct species; understanding the genomic basis of fitness, adaptation, speciation, complex ecological and economically important traits, and disease and insect resistance; facilitating forensics, genetic medicine and pharmacology; delineating conservation genetic units; and understanding the genetic effects of resource management practices, and assisting conservation and sustainable management of genetic resources. This Population Genomics book discusses the concepts, approaches, applications and promises of population genomics in addressing most of the above fundamental and applied crucial aspects in a variety of organisms from microorganisms to humans. The book provides insights into a range of emerging population genomics topics including population epigenomics, landscape genomics, seascape genomics, paleogenomics, ecological and evolutionary genomics, biogeography, demography, speciation, admixture, colonization and invasion, genomic selection, and plant and animal domestication. This book fills a vacuum in the field and is expected to become a primary reference in Population Genomics world-wide.
Publisher: Springer
ISBN: 3030045897
Category : Science
Languages : en
Pages : 824
Book Description
Population genomics has revolutionized various disciplines of biology including population, evolutionary, ecological and conservation genetics, plant and animal breeding, human health, medicine and pharmacology by allowing to address novel and long-standing questions with unprecedented power and accuracy. It employs large-scale or genome-wide genetic information and bioinformatics to address various fundamental and applied aspects in biology and related disciplines, and provides a comprehensive genome-wide perspective and new insights that were not possible before. These advances have become possible due to the development of new and low-cost sequencing and genotyping technologies and novel statistical approaches and software, bioinformatics tools, and models. Population genomics is tremendously advancing our understanding the roles of evolutionary processes, such as mutation, genetic drift, gene flow, and natural selection, in shaping up genetic variation at individual loci and across the genome and populations; improving the assessment of population genetic parameters or processes such as adaptive evolution, effective population size, gene flow, admixture, inbreeding and outbreeding depression, demography, and biogeography; resolving evolutionary histories and phylogenetic relationships of extant, ancient and extinct species; understanding the genomic basis of fitness, adaptation, speciation, complex ecological and economically important traits, and disease and insect resistance; facilitating forensics, genetic medicine and pharmacology; delineating conservation genetic units; and understanding the genetic effects of resource management practices, and assisting conservation and sustainable management of genetic resources. This Population Genomics book discusses the concepts, approaches, applications and promises of population genomics in addressing most of the above fundamental and applied crucial aspects in a variety of organisms from microorganisms to humans. The book provides insights into a range of emerging population genomics topics including population epigenomics, landscape genomics, seascape genomics, paleogenomics, ecological and evolutionary genomics, biogeography, demography, speciation, admixture, colonization and invasion, genomic selection, and plant and animal domestication. This book fills a vacuum in the field and is expected to become a primary reference in Population Genomics world-wide.