Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-valent Metals. 1998 Annual Progress Report PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-valent Metals. 1998 Annual Progress Report PDF full book. Access full book title Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-valent Metals. 1998 Annual Progress Report by . Download full books in PDF and EPUB format.

Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-valent Metals. 1998 Annual Progress Report

Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-valent Metals. 1998 Annual Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description
Contaminated groundwater and surface waters are a problem throughout the US and the world. In many instances, the types of contamination can be directly attributed to man''s actions. For instance, the burial of wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements that are soluble and mobile in soils and aquifers. Oxyanions of selenium, chromium, uranium, arsenic, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. In addition, the careless disposal of cleaning solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. Oxyanions of selenium, nitrogen, arsenic, vanadium, uranium, chromium, and molybdenum are contaminants in agricultural areas of the Western US. The management of these waters requires treatment to remove the contaminants before reuse or surface water disposal. In one instance in the Central Valley of California, the discharge of selenate-contaminated shallow groundwater to a wildlife refuge caused catastrophic bird deaths and deformities of embryos. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis. Both in-situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. Only limited success has been achieved in the field, partly because the basic surface chemical reactions are not well understood. The authors are performing fundamental investigations of the interactions of the relevant chlorinated solvents, and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop the fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures. As of May 1998, they have performed both bulk chemical measurements of the reduction reactions and surface science studies of model chemical systems. During these first two years of funding, the authors have made significant progress in both areas. Initially, they focused primarily on the reduction of selenate by elemental iron. They also performed some work with chromate, perchlorate, uranyl, and carbon tetrachloride. In the following sections some of the progress is described.

Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-valent Metals. 1998 Annual Progress Report

Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-valent Metals. 1998 Annual Progress Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Book Description
Contaminated groundwater and surface waters are a problem throughout the US and the world. In many instances, the types of contamination can be directly attributed to man''s actions. For instance, the burial of wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements that are soluble and mobile in soils and aquifers. Oxyanions of selenium, chromium, uranium, arsenic, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. In addition, the careless disposal of cleaning solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. Oxyanions of selenium, nitrogen, arsenic, vanadium, uranium, chromium, and molybdenum are contaminants in agricultural areas of the Western US. The management of these waters requires treatment to remove the contaminants before reuse or surface water disposal. In one instance in the Central Valley of California, the discharge of selenate-contaminated shallow groundwater to a wildlife refuge caused catastrophic bird deaths and deformities of embryos. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis. Both in-situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. Only limited success has been achieved in the field, partly because the basic surface chemical reactions are not well understood. The authors are performing fundamental investigations of the interactions of the relevant chlorinated solvents, and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop the fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures. As of May 1998, they have performed both bulk chemical measurements of the reduction reactions and surface science studies of model chemical systems. During these first two years of funding, the authors have made significant progress in both areas. Initially, they focused primarily on the reduction of selenate by elemental iron. They also performed some work with chromate, perchlorate, uranyl, and carbon tetrachloride. In the following sections some of the progress is described.

Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-valent Metals. Annual Progress Report, September 1, 1996--August 31, 1997

Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-valent Metals. Annual Progress Report, September 1, 1996--August 31, 1997 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Book Description
Contaminated groundwater is a problem throughout the US and the world. In many instances the tvpes of contamination can be directly attributed to man''s actions. For instance, the burial of wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements that are soluble and mobile in soils and aquifers. Oxyanions of selenium. chromium. uranium. arsenic. and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. In addition. the careless disposal of cleaning solvents. such as carbon tetrachloride and trichloroethylene. has further contaminated many groundwaters at these sites. In agricultural areas of the western US, shallow groundwaters have become contaminated with high levels of selenate, chromate, and uranyl. The management of these waters requires treatment to remove the contaminants before reuse or surface water disposal. In one instance in the Central Valley of California. the discharge of selenate-contaminated shallow groundwater to a wildlife refuge caused catastrophic bird deaths and deformities of embryos. At sites where solid-propellant rocket motors were tested or disposed of, high concentrations of perchlorate and trichloroethylene are being found in the groundwater. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used, on an experimental basis, for the reductive dechlorination of solvents and the removal of toxic trace elements. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. Only limited success has been achieved in the field, partly because the basic surface chemical reactions are not well understood. The authors are performing fundamental investigations of the interactions of the relevant chlorinated solvents, trace elements, and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop the fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures. The authors are perforrming both bulk chemical measurements of the reduction reactions and surface science studies of model chemical systems. During this first year of funding, the authors have already made significant progress in both areas. Initially, they have focused primarily on the reduction of selenate by elemental iron. They have also performed some work with chromate, perchlorate, uranyl, and carbon tetrachloride, as well. In the following sections, some of the progress is described.

Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-Valent Metals

Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero-Valent Metals PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

Monitored Natural Attenuation of Inorganic Contaminants in Ground Water

Monitored Natural Attenuation of Inorganic Contaminants in Ground Water PDF Author:
Publisher:
ISBN:
Category : Arsenic
Languages : en
Pages : 124

Book Description
V.3 ... consists of individual chapters that describe 1) the conceptual background for radionuclides, including tritium, radon, strontium, technetium, uranium, iodine, radium, thorium, cesium, plutonium-americium and 2) data requirements to be met during site characterization.

Arsenic Treatment Technologies for Soil, Waste, and Water

Arsenic Treatment Technologies for Soil, Waste, and Water PDF Author:
Publisher: DIANE Publishing
ISBN: 1428900209
Category : Arsenic wastes
Languages : en
Pages : 132

Book Description


Metals in Groundwater

Metals in Groundwater PDF Author: Herbert E. Allen
Publisher: CRC Press
ISBN: 1000114929
Category : Technology & Engineering
Languages : en
Pages : 458

Book Description
Metal contamination of groundwater results from many human activities, including agriculture, mining, and the disposal of municipal waste and fly ash. Metals in Groundwater describes the transport of metals to groundwater from these and other sources. It also covers risk assessment of metals in groundwater, coupling of chemicals and hydrological models, and sorption of metals onto soils and clays. The speciation of metals is examined in detail. The book will interest researchers in environmental quality, mining, and agriculture; consultants; industry professionals; and personnel within regulatory agencies.

Best Practice Guide on Metals Removal From Drinking Water By Treatment

Best Practice Guide on Metals Removal From Drinking Water By Treatment PDF Author: Mustafa Ersoz
Publisher: IWA Publishing
ISBN: 1843393840
Category : Science
Languages : en
Pages : 120

Book Description
Part of Metals and Related Substances in Drinking Water Set - buy all five books together to save over 30%! The EU Drinking Water Directive sets a range of standards for metals and related substances in drinking water, many of which are concerned with health protection. A number of these standards are very stringent and require compliance to be assessed at the point of use. Because of the difficulties associated with monitoring, historic practices in many countries have concentrated on the quality of water within the distribution network. As a result, the magnitude of problems with some metals and related substances in drinking water is not fully appreciated in all European countries, and the extent and nature of corrective actions differ widely. This Best Practice Guide on Metals Removal From Drinking Water By Treatment describes drinking water standards and regulations, and explains the impact of a range of water treatment processes on metal levels in drinking water. Its objectives are to provide a basis for assessing the extent of problems and to identify appropriate water treatment options. The Guide provides a reasoned guide to selection of key water treatment processes. Each chapter focuses on a specific water treatment process and has been written by experts in that particular process. Best Practice Guide on Metals Removal From Drinking Water By Treatment provides practice-based knowledge for water engineers and scientists in large and small water utilities, regulatory agencies, health agencies and local municipalities (from cities through to small rural communities). It also supports university level teaching in degree schemes that relate to water management. This Guide is one of a series produced by the International Water Association’s Specialist Group on Metals and Related Substances in Drinking Water. The series is an up-to-date compilation of a range of scientific, engineering, regulatory and operational issues concerned with the control and removal of metals from drinking water.

Use of Zero-valent Metals in In-situ Remediation of Contaminated Ground Water

Use of Zero-valent Metals in In-situ Remediation of Contaminated Ground Water PDF Author: Robert W. Gillham
Publisher:
ISBN:
Category :
Languages : en
Pages : 10

Book Description


Emerging Techniques for Treatment of Toxic Metals from Wastewater

Emerging Techniques for Treatment of Toxic Metals from Wastewater PDF Author: Akil Ahmad
Publisher: Elsevier
ISBN: 0128228814
Category : Technology & Engineering
Languages : en
Pages : 582

Book Description
Emerging Techniques for Treatment of Toxic Metals from Wastewater explores the different physical and chemical methods that can be used to remove toxins from wastewater, including adsorption, solvent extraction, ion exchange, precipitation, filtration and photocatalytic degradation. Bringing together contributions from leading experts in the field, the book covers each of the different techniques in detail, combining emergent research outcomes with fundamental theoretical concepts to provide a clear appraisal of the different techniques available, along with their applications. It is an essential recourse for researchers, industrialists and students concerned with the remediation of toxic metals from water and wastewater. - Covers the various techniques for metal removal and their applications in a single source - Addresses emerging technologies; chemical, physical, and biological including nanotechnology - Brings together novel techniques and their applications for enhancing large scale industrial production signposting opportunities for significant enhancements

Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites

Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309278139
Category : Nature
Languages : en
Pages : 423

Book Description
Across the United States, thousands of hazardous waste sites are contaminated with chemicals that prevent the underlying groundwater from meeting drinking water standards. These include Superfund sites and other facilities that handle and dispose of hazardous waste, active and inactive dry cleaners, and leaking underground storage tanks; many are at federal facilities such as military installations. While many sites have been closed over the past 30 years through cleanup programs run by the U.S. Department of Defense, the U.S. EPA, and other state and federal agencies, the remaining caseload is much more difficult to address because the nature of the contamination and subsurface conditions make it difficult to achieve drinking water standards in the affected groundwater. Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites estimates that at least 126,000 sites across the U.S. still have contaminated groundwater, and their closure is expected to cost at least $110 billion to $127 billion. About 10 percent of these sites are considered "complex," meaning restoration is unlikely to be achieved in the next 50 to 100 years due to technological limitations. At sites where contaminant concentrations have plateaued at levels above cleanup goals despite active efforts, the report recommends evaluating whether the sites should transition to long-term management, where risks would be monitored and harmful exposures prevented, but at reduced costs.