Author: Gerd Grubb
Publisher: Springer Science & Business Media
ISBN: 146120769X
Category : Mathematics
Languages : en
Pages : 536
Book Description
Pseudodifferential methods are central to the study of partial differential equations, because they permit an "algebraization." The main purpose of this book is to set up an operational calculus for operators defined from differential and pseudodifferential boundary values problems via a resolvent construction. A secondary purposed is to give a complete treatment of the properties of the calculus of pseudodifferential boundary problems with transmission, both the first version by Boutet de Monvel (brought completely up to date in this edition) and in version containing a parameter running in an unbounded set. And finally, the book presents some applications to evolution problems, index theory, fractional powers, spectral theory and singular perturbation theory. Thus the book’s improved proofs and modern points of view will be useful to research mathematicians and to graduate students studying partial differential equations and pseudodifferential operators.
Functional Calculus of Pseudodifferential Boundary Problems
Author: Gerd Grubb
Publisher: Springer Science & Business Media
ISBN: 146120769X
Category : Mathematics
Languages : en
Pages : 536
Book Description
Pseudodifferential methods are central to the study of partial differential equations, because they permit an "algebraization." The main purpose of this book is to set up an operational calculus for operators defined from differential and pseudodifferential boundary values problems via a resolvent construction. A secondary purposed is to give a complete treatment of the properties of the calculus of pseudodifferential boundary problems with transmission, both the first version by Boutet de Monvel (brought completely up to date in this edition) and in version containing a parameter running in an unbounded set. And finally, the book presents some applications to evolution problems, index theory, fractional powers, spectral theory and singular perturbation theory. Thus the book’s improved proofs and modern points of view will be useful to research mathematicians and to graduate students studying partial differential equations and pseudodifferential operators.
Publisher: Springer Science & Business Media
ISBN: 146120769X
Category : Mathematics
Languages : en
Pages : 536
Book Description
Pseudodifferential methods are central to the study of partial differential equations, because they permit an "algebraization." The main purpose of this book is to set up an operational calculus for operators defined from differential and pseudodifferential boundary values problems via a resolvent construction. A secondary purposed is to give a complete treatment of the properties of the calculus of pseudodifferential boundary problems with transmission, both the first version by Boutet de Monvel (brought completely up to date in this edition) and in version containing a parameter running in an unbounded set. And finally, the book presents some applications to evolution problems, index theory, fractional powers, spectral theory and singular perturbation theory. Thus the book’s improved proofs and modern points of view will be useful to research mathematicians and to graduate students studying partial differential equations and pseudodifferential operators.
Functional Calculus of Pseudo-Differential Boundary Problems
Author: G. Grubb
Publisher: Springer Science & Business Media
ISBN: 1475718985
Category : Science
Languages : en
Pages : 520
Book Description
CHAPTER 1. STANDARD PSEUDO-DIFFERENTIAL BOUNDARY PROBLEMS AND THEIR REALIZATIONS 1. 1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2 The calculus of pseudo-differential boundary problems . . •. 19 1. 3 Green's formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. 4 Realizations and normal boundary conditions . . . . . . . . . . . . . . 39 1. 5 Parameter-ellipticity and parabolicity . . . . . . . . . . . . . . . . . . . 50 1. 6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1. 7 Semiboundedness and coerciveness . . . . . . . . •. . . . . . . . . . . •. . . . 96 CHAPTER 2. THE CALCULUS OF PARAMETER-DEPENDENT OPERATORS 2. 1 Parameter-dependent pseudo-differential operators . . •. . . . . 125 2. 2 The transmission property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2. 3 Parameter-dependent boundary symbol s . . . . . . . . . . . . . . . . . . . . . 179 2. 4 Operators and kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2. 5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2. 6 Composition of xn-independent boundary symbol operators . . 234 2. 7 Compositions in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2. 8 Strictly homogeneous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 CHAPTER 3. PARAMETRIX AND RESOLVENT CONSTRUCTIONS 3. 1 Ellipticity. Auxiliary elliptic operators . . . . . . . . . . . . . . . . 280 3. 2 The parametrix construction . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . 297 3. 3 The resolvent of a realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3. 4 Other special cases . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 CHAPTER 4. SOME APPLICATIONS 4. 1 Evolution problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 4. 2 The heat operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 4. 3 An index formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 4. 4 Complex powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 4. 5 Spectral asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 4. 6 Implicit eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . •. . . . . 437 4. 7 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 APPENDIX. VARIOUS PREREQUISITES (A. 1 General notation. A. 2 Functions and distributions. A. 3 Sobolev spaces. A. 4 Spaces over sub sets of mn. A. 5 Spaces over manifolds. A. 6 Notions from 473 spectral theory. ) '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAPHY . . . •. . . . . . . •. . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Publisher: Springer Science & Business Media
ISBN: 1475718985
Category : Science
Languages : en
Pages : 520
Book Description
CHAPTER 1. STANDARD PSEUDO-DIFFERENTIAL BOUNDARY PROBLEMS AND THEIR REALIZATIONS 1. 1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2 The calculus of pseudo-differential boundary problems . . •. 19 1. 3 Green's formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. 4 Realizations and normal boundary conditions . . . . . . . . . . . . . . 39 1. 5 Parameter-ellipticity and parabolicity . . . . . . . . . . . . . . . . . . . 50 1. 6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1. 7 Semiboundedness and coerciveness . . . . . . . . •. . . . . . . . . . . •. . . . 96 CHAPTER 2. THE CALCULUS OF PARAMETER-DEPENDENT OPERATORS 2. 1 Parameter-dependent pseudo-differential operators . . •. . . . . 125 2. 2 The transmission property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2. 3 Parameter-dependent boundary symbol s . . . . . . . . . . . . . . . . . . . . . 179 2. 4 Operators and kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2. 5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2. 6 Composition of xn-independent boundary symbol operators . . 234 2. 7 Compositions in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2. 8 Strictly homogeneous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 CHAPTER 3. PARAMETRIX AND RESOLVENT CONSTRUCTIONS 3. 1 Ellipticity. Auxiliary elliptic operators . . . . . . . . . . . . . . . . 280 3. 2 The parametrix construction . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . 297 3. 3 The resolvent of a realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3. 4 Other special cases . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 CHAPTER 4. SOME APPLICATIONS 4. 1 Evolution problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 4. 2 The heat operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 4. 3 An index formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 4. 4 Complex powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 4. 5 Spectral asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 4. 6 Implicit eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . •. . . . . 437 4. 7 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 APPENDIX. VARIOUS PREREQUISITES (A. 1 General notation. A. 2 Functions and distributions. A. 3 Sobolev spaces. A. 4 Spaces over sub sets of mn. A. 5 Spaces over manifolds. A. 6 Notions from 473 spectral theory. ) '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAPHY . . . •. . . . . . . •. . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Calculus of Pseudo-Differential Boundary Problems
Author: G. Grubb
Publisher: Birkhäuser
ISBN: 9780817633493
Category : Science
Languages : en
Pages : 0
Book Description
CHAPTER 1. STANDARD PSEUDO-DIFFERENTIAL BOUNDARY PROBLEMS AND THEIR REALIZATIONS 1. 1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2 The calculus of pseudo-differential boundary problems . . •. 19 1. 3 Green's formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. 4 Realizations and normal boundary conditions . . . . . . . . . . . . . . 39 1. 5 Parameter-ellipticity and parabolicity . . . . . . . . . . . . . . . . . . . 50 1. 6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1. 7 Semiboundedness and coerciveness . . . . . . . . •. . . . . . . . . . . •. . . . 96 CHAPTER 2. THE CALCULUS OF PARAMETER-DEPENDENT OPERATORS 2. 1 Parameter-dependent pseudo-differential operators . . •. . . . . 125 2. 2 The transmission property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2. 3 Parameter-dependent boundary symbol s . . . . . . . . . . . . . . . . . . . . . 179 2. 4 Operators and kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2. 5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2. 6 Composition of xn-independent boundary symbol operators . . 234 2. 7 Compositions in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2. 8 Strictly homogeneous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 CHAPTER 3. PARAMETRIX AND RESOLVENT CONSTRUCTIONS 3. 1 Ellipticity. Auxiliary elliptic operators . . . . . . . . . . . . . . . . 280 3. 2 The parametrix construction . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . 297 3. 3 The resolvent of a realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3. 4 Other special cases . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 CHAPTER 4. SOME APPLICATIONS 4. 1 Evolution problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 4. 2 The heat operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 4. 3 An index formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 4. 4 Complex powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 4. 5 Spectral asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 4. 6 Implicit eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . •. . . . . 437 4. 7 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 APPENDIX. VARIOUS PREREQUISITES (A. 1 General notation. A. 2 Functions and distributions. A. 3 Sobolev spaces. A. 4 Spaces over sub sets of mn. A. 5 Spaces over manifolds. A. 6 Notions from 473 spectral theory. ) '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAPHY . . . •. . . . . . . •. . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Publisher: Birkhäuser
ISBN: 9780817633493
Category : Science
Languages : en
Pages : 0
Book Description
CHAPTER 1. STANDARD PSEUDO-DIFFERENTIAL BOUNDARY PROBLEMS AND THEIR REALIZATIONS 1. 1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2 The calculus of pseudo-differential boundary problems . . •. 19 1. 3 Green's formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1. 4 Realizations and normal boundary conditions . . . . . . . . . . . . . . 39 1. 5 Parameter-ellipticity and parabolicity . . . . . . . . . . . . . . . . . . . 50 1. 6 Adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 1. 7 Semiboundedness and coerciveness . . . . . . . . •. . . . . . . . . . . •. . . . 96 CHAPTER 2. THE CALCULUS OF PARAMETER-DEPENDENT OPERATORS 2. 1 Parameter-dependent pseudo-differential operators . . •. . . . . 125 2. 2 The transmission property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 2. 3 Parameter-dependent boundary symbol s . . . . . . . . . . . . . . . . . . . . . 179 2. 4 Operators and kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 2. 5 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 2. 6 Composition of xn-independent boundary symbol operators . . 234 2. 7 Compositions in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 2. 8 Strictly homogeneous symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 CHAPTER 3. PARAMETRIX AND RESOLVENT CONSTRUCTIONS 3. 1 Ellipticity. Auxiliary elliptic operators . . . . . . . . . . . . . . . . 280 3. 2 The parametrix construction . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . 297 3. 3 The resolvent of a realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 326 3. 4 Other special cases . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 CHAPTER 4. SOME APPLICATIONS 4. 1 Evolution problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359 4. 2 The heat operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365 4. 3 An index formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 4. 4 Complex powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 4. 5 Spectral asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415 4. 6 Implicit eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . •. . . . . 437 4. 7 Singular perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 APPENDIX. VARIOUS PREREQUISITES (A. 1 General notation. A. 2 Functions and distributions. A. 3 Sobolev spaces. A. 4 Spaces over sub sets of mn. A. 5 Spaces over manifolds. A. 6 Notions from 473 spectral theory. ) '" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIBLIOGRAPHY . . . •. . . . . . . •. . . . . . . . . . . . . . . •. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497 INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Analytic Methods for Heat Green Operators
Author: Kazuaki Taira
Publisher: Springer Nature
ISBN: 3031666127
Category :
Languages : en
Pages : 634
Book Description
Publisher: Springer Nature
ISBN: 3031666127
Category :
Languages : en
Pages : 634
Book Description
Progress in Partial Differential Equations
Author: Herbert Amann
Publisher: CRC Press
ISBN: 9780582317086
Category : Mathematics
Languages : en
Pages : 212
Book Description
The numerous applications of partial differential equations to problems in physics, mechanics, and engineering keep the subject an extremely active and vital area of research. With the number of researchers working in the field, advances-large and small-come frequently. Therefore, it is essential that mathematicians working in partial differential equations and applied mathematics keep abreast of new developments. Progress in Partial Differential Equations, presents some of the latest research in this important field. Both volumes contain the lectures and papers of top international researchers contributed at the Third European Conference on Elliptic and Parabolic Problems. In addition to the general theory of elliptic and parabolic problems, the topics covered at the conference include: applications free boundary problems fluid mechanics general evolution problems ocalculus of variations homogenization modeling numerical analysis The research notes in these volumes offer a valuable update on the state-of-the-art in this important field of mathematics.
Publisher: CRC Press
ISBN: 9780582317086
Category : Mathematics
Languages : en
Pages : 212
Book Description
The numerous applications of partial differential equations to problems in physics, mechanics, and engineering keep the subject an extremely active and vital area of research. With the number of researchers working in the field, advances-large and small-come frequently. Therefore, it is essential that mathematicians working in partial differential equations and applied mathematics keep abreast of new developments. Progress in Partial Differential Equations, presents some of the latest research in this important field. Both volumes contain the lectures and papers of top international researchers contributed at the Third European Conference on Elliptic and Parabolic Problems. In addition to the general theory of elliptic and parabolic problems, the topics covered at the conference include: applications free boundary problems fluid mechanics general evolution problems ocalculus of variations homogenization modeling numerical analysis The research notes in these volumes offer a valuable update on the state-of-the-art in this important field of mathematics.
Pseudo-Differential Operators
Author: Heinz O. Cordes
Publisher: Springer
ISBN: 3540478868
Category : Mathematics
Languages : en
Pages : 495
Book Description
Publisher: Springer
ISBN: 3540478868
Category : Mathematics
Languages : en
Pages : 495
Book Description
Pseudo-Differential Operators: Groups, Geometry and Applications
Author: M. W. Wong
Publisher: Birkhäuser
ISBN: 3319475126
Category : Mathematics
Languages : en
Pages : 242
Book Description
This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.
Publisher: Birkhäuser
ISBN: 3319475126
Category : Mathematics
Languages : en
Pages : 242
Book Description
This volume consists of papers inspired by the special session on pseudo-differential operators at the 10th ISAAC Congress held at the University of Macau, August 3-8, 2015 and the mini-symposium on pseudo-differential operators in industries and technologies at the 8th ICIAM held at the National Convention Center in Beijing, August 10-14, 2015. The twelve papers included present cutting-edge trends in pseudo-differential operators and applications from the perspectives of Lie groups (Chapters 1-2), geometry (Chapters 3-5) and applications (Chapters 6-12). Many contributions cover applications in probability, differential equations and time-frequency analysis. A focus on the synergies of pseudo-differential operators with applications, especially real-life applications, enhances understanding of the analysis and the usefulness of these operators.
Operator Methods for Boundary Value Problems
Author: Seppo Hassi
Publisher: Cambridge University Press
ISBN: 1139561316
Category : Mathematics
Languages : en
Pages : 297
Book Description
Presented in this volume are a number of new results concerning the extension theory and spectral theory of unbounded operators using the recent notions of boundary triplets and boundary relations. This approach relies on linear single-valued and multi-valued maps, isometric in a Krein space sense, and offers a basic framework for recent developments in system theory. Central to the theory are analytic tools such as Weyl functions, including Titchmarsh-Weyl m-functions and Dirichlet-to-Neumann maps. A wide range of topics is considered in this context from the abstract to the applied, including boundary value problems for ordinary and partial differential equations; infinite-dimensional perturbations; local point-interactions; boundary and passive control state/signal systems; extension theory of accretive, sectorial and symmetric operators; and Calkin's abstract boundary conditions. This accessible treatment of recent developments, written by leading researchers, will appeal to a broad range of researchers, students and professionals.
Publisher: Cambridge University Press
ISBN: 1139561316
Category : Mathematics
Languages : en
Pages : 297
Book Description
Presented in this volume are a number of new results concerning the extension theory and spectral theory of unbounded operators using the recent notions of boundary triplets and boundary relations. This approach relies on linear single-valued and multi-valued maps, isometric in a Krein space sense, and offers a basic framework for recent developments in system theory. Central to the theory are analytic tools such as Weyl functions, including Titchmarsh-Weyl m-functions and Dirichlet-to-Neumann maps. A wide range of topics is considered in this context from the abstract to the applied, including boundary value problems for ordinary and partial differential equations; infinite-dimensional perturbations; local point-interactions; boundary and passive control state/signal systems; extension theory of accretive, sectorial and symmetric operators; and Calkin's abstract boundary conditions. This accessible treatment of recent developments, written by leading researchers, will appeal to a broad range of researchers, students and professionals.
Pseudo-Differential Operators: Complex Analysis and Partial Differential Equations
Author: Bert-Wolfgang Schulze
Publisher: Springer Science & Business Media
ISBN: 3034601980
Category : Mathematics
Languages : en
Pages : 294
Book Description
Consists of the expository paper based on the 6-hour minicourse given by Professor Bert-Wolfgang Schulze, and sixteen papers based on lectures given at the workshop and on invitations.
Publisher: Springer Science & Business Media
ISBN: 3034601980
Category : Mathematics
Languages : en
Pages : 294
Book Description
Consists of the expository paper based on the 6-hour minicourse given by Professor Bert-Wolfgang Schulze, and sixteen papers based on lectures given at the workshop and on invitations.
Elliptic Boundary Value Problems in Domains with Point Singularities
Author: Vladimir Kozlov
Publisher: American Mathematical Soc.
ISBN: 0821807544
Category : Mathematics
Languages : en
Pages : 426
Book Description
For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: American Mathematical Soc.
ISBN: 0821807544
Category : Mathematics
Languages : en
Pages : 426
Book Description
For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR