Author: Huchuan Lu
Publisher: Springer Nature
ISBN: 3031463080
Category : Computers
Languages : en
Pages : 451
Book Description
The five-volume set LNCS 14355, 14356, 14357, 14358 and 14359 constitutes the refereed proceedings of the 12th International Conference on Image and Graphics, ICIG 2023, held in Nanjing, China, during September 22–24, 2023. The 166 papers presented in the proceedings set were carefully reviewed and selected from 409 submissions. They were organized in topical sections as follows: computer vision and pattern recognition; computer graphics and visualization; compression, transmission, retrieval; artificial intelligence; biological and medical image processing; color and multispectral processing; computational imaging; multi-view and stereoscopic processing; multimedia security; surveillance and remote sensing, and virtual reality. The ICIG 2023 is a biennial conference that focuses on innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking. It will feature world-class plenary speakers, exhibits, and high quality peer reviewed oral and poster presentations.
Image and Graphics
Author: Huchuan Lu
Publisher: Springer Nature
ISBN: 3031463080
Category : Computers
Languages : en
Pages : 451
Book Description
The five-volume set LNCS 14355, 14356, 14357, 14358 and 14359 constitutes the refereed proceedings of the 12th International Conference on Image and Graphics, ICIG 2023, held in Nanjing, China, during September 22–24, 2023. The 166 papers presented in the proceedings set were carefully reviewed and selected from 409 submissions. They were organized in topical sections as follows: computer vision and pattern recognition; computer graphics and visualization; compression, transmission, retrieval; artificial intelligence; biological and medical image processing; color and multispectral processing; computational imaging; multi-view and stereoscopic processing; multimedia security; surveillance and remote sensing, and virtual reality. The ICIG 2023 is a biennial conference that focuses on innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking. It will feature world-class plenary speakers, exhibits, and high quality peer reviewed oral and poster presentations.
Publisher: Springer Nature
ISBN: 3031463080
Category : Computers
Languages : en
Pages : 451
Book Description
The five-volume set LNCS 14355, 14356, 14357, 14358 and 14359 constitutes the refereed proceedings of the 12th International Conference on Image and Graphics, ICIG 2023, held in Nanjing, China, during September 22–24, 2023. The 166 papers presented in the proceedings set were carefully reviewed and selected from 409 submissions. They were organized in topical sections as follows: computer vision and pattern recognition; computer graphics and visualization; compression, transmission, retrieval; artificial intelligence; biological and medical image processing; color and multispectral processing; computational imaging; multi-view and stereoscopic processing; multimedia security; surveillance and remote sensing, and virtual reality. The ICIG 2023 is a biennial conference that focuses on innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking. It will feature world-class plenary speakers, exhibits, and high quality peer reviewed oral and poster presentations.
Practical Machine Learning for Computer Vision
Author: Valliappa Lakshmanan
Publisher: "O'Reilly Media, Inc."
ISBN: 1098102339
Category : Computers
Languages : en
Pages : 481
Book Description
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Publisher: "O'Reilly Media, Inc."
ISBN: 1098102339
Category : Computers
Languages : en
Pages : 481
Book Description
This practical book shows you how to employ machine learning models to extract information from images. ML engineers and data scientists will learn how to solve a variety of image problems including classification, object detection, autoencoders, image generation, counting, and captioning with proven ML techniques. This book provides a great introduction to end-to-end deep learning: dataset creation, data preprocessing, model design, model training, evaluation, deployment, and interpretability. Google engineers Valliappa Lakshmanan, Martin Görner, and Ryan Gillard show you how to develop accurate and explainable computer vision ML models and put them into large-scale production using robust ML architecture in a flexible and maintainable way. You'll learn how to design, train, evaluate, and predict with models written in TensorFlow or Keras. You'll learn how to: Design ML architecture for computer vision tasks Select a model (such as ResNet, SqueezeNet, or EfficientNet) appropriate to your task Create an end-to-end ML pipeline to train, evaluate, deploy, and explain your model Preprocess images for data augmentation and to support learnability Incorporate explainability and responsible AI best practices Deploy image models as web services or on edge devices Monitor and manage ML models
Statistics
Author: Thomas Hill
Publisher: StatSoft, Inc.
ISBN: 9781884233593
Category : Mathematics
Languages : en
Pages : 854
Book Description
This - one of a kind - book offers a comprehensive, almost encyclopedic presentation of statistical methods and analytic approaches used in science, industry, business, and data mining, written from the perspective of the real-life practitioner ("consumer") of these methods.
Publisher: StatSoft, Inc.
ISBN: 9781884233593
Category : Mathematics
Languages : en
Pages : 854
Book Description
This - one of a kind - book offers a comprehensive, almost encyclopedic presentation of statistical methods and analytic approaches used in science, industry, business, and data mining, written from the perspective of the real-life practitioner ("consumer") of these methods.
Deep Learning for Computer Vision
Author: Rajalingappaa Shanmugamani
Publisher: Packt Publishing Ltd
ISBN: 1788293355
Category : Computers
Languages : en
Pages : 304
Book Description
Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1788293355
Category : Computers
Languages : en
Pages : 304
Book Description
Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.
High-Order Models in Semantic Image Segmentation
Author: Ismail Ben Ayed
Publisher: Academic Press
ISBN: 0128092297
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. The book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is ideal for academics, industry researchers, and graduate students in computer vision, machine learning and medical imaging. - Gives an intuitive and conceptual understanding of this mathematically involved subject by using a large number of graphical illustrations - Provides the right amount of knowledge to apply sophisticated techniques for a wide range of new applications - Contains numerous tables that compare different algorithms, facilitating the appropriate choice of algorithm for the intended application - Presents an array of practical applications in computer vision and medical imaging - Includes code for many of the algorithms that is available on the book's companion website
Publisher: Academic Press
ISBN: 0128092297
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. The book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is ideal for academics, industry researchers, and graduate students in computer vision, machine learning and medical imaging. - Gives an intuitive and conceptual understanding of this mathematically involved subject by using a large number of graphical illustrations - Provides the right amount of knowledge to apply sophisticated techniques for a wide range of new applications - Contains numerous tables that compare different algorithms, facilitating the appropriate choice of algorithm for the intended application - Presents an array of practical applications in computer vision and medical imaging - Includes code for many of the algorithms that is available on the book's companion website
Pattern Recognition
Author: Axel Pinz
Publisher: Springer
ISBN: 3642327176
Category : Computers
Languages : en
Pages : 510
Book Description
This book constitutes the refereed proceedings of the 34th Symposium of the German Association for Pattern Recognition, DAGM 2012, and the 36th Symposium of the Austrian Association for Pattern Recognition, OAGM 2012, held in Graz, Austria, in August 2012. The 27 revised full papers and 23 revised poster papers were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on segmentation, low-level vision, 3D reconstruction, recognition, applications, learning, and features.
Publisher: Springer
ISBN: 3642327176
Category : Computers
Languages : en
Pages : 510
Book Description
This book constitutes the refereed proceedings of the 34th Symposium of the German Association for Pattern Recognition, DAGM 2012, and the 36th Symposium of the Austrian Association for Pattern Recognition, OAGM 2012, held in Graz, Austria, in August 2012. The 27 revised full papers and 23 revised poster papers were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on segmentation, low-level vision, 3D reconstruction, recognition, applications, learning, and features.
Advancement of Machine Intelligence in Interactive Medical Image Analysis
Author: Om Prakash Verma
Publisher: Springer Nature
ISBN: 9811511004
Category : Computers
Languages : en
Pages : 336
Book Description
The book discusses major technical advances and research findings in the field of machine intelligence in medical image analysis. It examines the latest technologies and that have been implemented in clinical practice, such as computational intelligence in computer-aided diagnosis, biological image analysis, and computer-aided surgery and therapy. This book provides insights into the basic science involved in processing, analysing, and utilising all aspects of advanced computational intelligence in medical decision-making based on medical imaging.
Publisher: Springer Nature
ISBN: 9811511004
Category : Computers
Languages : en
Pages : 336
Book Description
The book discusses major technical advances and research findings in the field of machine intelligence in medical image analysis. It examines the latest technologies and that have been implemented in clinical practice, such as computational intelligence in computer-aided diagnosis, biological image analysis, and computer-aided surgery and therapy. This book provides insights into the basic science involved in processing, analysing, and utilising all aspects of advanced computational intelligence in medical decision-making based on medical imaging.
Pattern Recognition and Computer Vision
Author: Shiqi Yu
Publisher: Springer Nature
ISBN: 3031189167
Category : Computers
Languages : en
Pages : 752
Book Description
The 4-volume set LNCS 13534, 13535, 13536 and 13537 constitutes the refereed proceedings of the 5th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2022, held in Shenzhen, China, in November 2022. The 233 full papers presented were carefully reviewed and selected from 564 submissions. The papers have been organized in the following topical sections: Theories and Feature Extraction; Machine learning, Multimedia and Multimodal; Optimization and Neural Network and Deep Learning; Biomedical Image Processing and Analysis; Pattern Classification and Clustering; 3D Computer Vision and Reconstruction, Robots and Autonomous Driving; Recognition, Remote Sensing; Vision Analysis and Understanding; Image Processing and Low-level Vision; Object Detection, Segmentation and Tracking.
Publisher: Springer Nature
ISBN: 3031189167
Category : Computers
Languages : en
Pages : 752
Book Description
The 4-volume set LNCS 13534, 13535, 13536 and 13537 constitutes the refereed proceedings of the 5th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2022, held in Shenzhen, China, in November 2022. The 233 full papers presented were carefully reviewed and selected from 564 submissions. The papers have been organized in the following topical sections: Theories and Feature Extraction; Machine learning, Multimedia and Multimodal; Optimization and Neural Network and Deep Learning; Biomedical Image Processing and Analysis; Pattern Classification and Clustering; 3D Computer Vision and Reconstruction, Robots and Autonomous Driving; Recognition, Remote Sensing; Vision Analysis and Understanding; Image Processing and Low-level Vision; Object Detection, Segmentation and Tracking.
Interactive Collaborative Robotics
Author: Andrey Ronzhin
Publisher: Springer Nature
ISBN: 3030877256
Category : Computers
Languages : en
Pages : 241
Book Description
This book constitutes the proceedings of the 6th International Conference on Interactive Collaborative Robotics, ICR 2021, held in St. Petersburg, Russia, in October 2021. The 19 papers presented were carefully reviewed and selected from 40 submissions. Challenges of human-robot interaction, robot control and behavior in social robotics and collaborative robotics, as well as applied robotic and cyber-physical systems are mainly discussed in the papers.
Publisher: Springer Nature
ISBN: 3030877256
Category : Computers
Languages : en
Pages : 241
Book Description
This book constitutes the proceedings of the 6th International Conference on Interactive Collaborative Robotics, ICR 2021, held in St. Petersburg, Russia, in October 2021. The 19 papers presented were carefully reviewed and selected from 40 submissions. Challenges of human-robot interaction, robot control and behavior in social robotics and collaborative robotics, as well as applied robotic and cyber-physical systems are mainly discussed in the papers.
Pattern Recognition
Author: Zeynep Akata
Publisher: Springer Nature
ISBN: 3030712788
Category : Computers
Languages : en
Pages : 504
Book Description
This book constitutes the refereed proceedings of the 42nd German Conference on Pattern Recognition, DAGM GCPR 2020, which took place during September 28 until October 1, 2020. The conference was planned to take place in Tübingen, Germany, but had to change to an online format due to the COVID-19 pandemic. The 34 papers presented in this volume were carefully reviewed and selected from a total of 89 submissions. They were organized in topical sections named: Normalizing Flow, Semantics, Physics, Camera Calibration and Computer Vision, Pattern Recognition, Machine Learning.
Publisher: Springer Nature
ISBN: 3030712788
Category : Computers
Languages : en
Pages : 504
Book Description
This book constitutes the refereed proceedings of the 42nd German Conference on Pattern Recognition, DAGM GCPR 2020, which took place during September 28 until October 1, 2020. The conference was planned to take place in Tübingen, Germany, but had to change to an online format due to the COVID-19 pandemic. The 34 papers presented in this volume were carefully reviewed and selected from a total of 89 submissions. They were organized in topical sections named: Normalizing Flow, Semantics, Physics, Camera Calibration and Computer Vision, Pattern Recognition, Machine Learning.