From Extractive to Abstractive Summarization: A Journey PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download From Extractive to Abstractive Summarization: A Journey PDF full book. Access full book title From Extractive to Abstractive Summarization: A Journey by Parth Mehta. Download full books in PDF and EPUB format.

From Extractive to Abstractive Summarization: A Journey

From Extractive to Abstractive Summarization: A Journey PDF Author: Parth Mehta
Publisher: Springer
ISBN: 9811389349
Category : Computers
Languages : en
Pages : 120

Book Description
This book describes recent advances in text summarization, identifies remaining gaps and challenges, and proposes ways to overcome them. It begins with one of the most frequently discussed topics in text summarization – ‘sentence extraction’ –, examines the effectiveness of current techniques in domain-specific text summarization, and proposes several improvements. In turn, the book describes the application of summarization in the legal and scientific domains, describing two new corpora that consist of more than 100 thousand court judgments and more than 20 thousand scientific articles, with the corresponding manually written summaries. The availability of these large-scale corpora opens up the possibility of using the now popular data-driven approaches based on deep learning. The book then highlights the effectiveness of neural sentence extraction approaches, which perform just as well as rule-based approaches, but without the need for any manual annotation. As a next step, multiple techniques for creating ensembles of sentence extractors – which deliver better and more robust summaries – are proposed. In closing, the book presents a neural network-based model for sentence compression. Overall the book takes readers on a journey that begins with simple sentence extraction and ends in abstractive summarization, while also covering key topics like ensemble techniques and domain-specific summarization, which have not been explored in detail prior to this.

From Extractive to Abstractive Summarization: A Journey

From Extractive to Abstractive Summarization: A Journey PDF Author: Parth Mehta
Publisher: Springer
ISBN: 9811389349
Category : Computers
Languages : en
Pages : 120

Book Description
This book describes recent advances in text summarization, identifies remaining gaps and challenges, and proposes ways to overcome them. It begins with one of the most frequently discussed topics in text summarization – ‘sentence extraction’ –, examines the effectiveness of current techniques in domain-specific text summarization, and proposes several improvements. In turn, the book describes the application of summarization in the legal and scientific domains, describing two new corpora that consist of more than 100 thousand court judgments and more than 20 thousand scientific articles, with the corresponding manually written summaries. The availability of these large-scale corpora opens up the possibility of using the now popular data-driven approaches based on deep learning. The book then highlights the effectiveness of neural sentence extraction approaches, which perform just as well as rule-based approaches, but without the need for any manual annotation. As a next step, multiple techniques for creating ensembles of sentence extractors – which deliver better and more robust summaries – are proposed. In closing, the book presents a neural network-based model for sentence compression. Overall the book takes readers on a journey that begins with simple sentence extraction and ends in abstractive summarization, while also covering key topics like ensemble techniques and domain-specific summarization, which have not been explored in detail prior to this.

Social Computing and Social Media

Social Computing and Social Media PDF Author: Adela Coman
Publisher: Springer Nature
ISBN: 3031359151
Category : Computers
Languages : en
Pages : 655

Book Description
This two-volume set LNCS 14025 and 14026 constitutes the refereed proceedings of the 15th International Conference on Social Computing and Social Media, SCSM 2023, held as part of the 25th International Conference, HCI International 2023, held in Copenhagen, Denmark in July 2023. The total of 1578 papers and 396 posters included in the HCII 2023 proceedings was carefully reviewed and selected from 7472 submissions. The SCSM 2023 conference offers a wide range of topics related to the design, development, assessment, use, and impact of social media.

PRICAI 2019: Trends in Artificial Intelligence

PRICAI 2019: Trends in Artificial Intelligence PDF Author: Abhaya C. Nayak
Publisher: Springer Nature
ISBN: 3030299082
Category : Computers
Languages : en
Pages : 789

Book Description
This three-volume set, LNAI 11670, LNAI 11671, and LNAI 11672 constitutes the thoroughly refereed proceedings of the 16th Pacific Rim Conference on Artificial Intelligence, PRICAI 2019, held in Cuvu, Yanuca Island, Fiji, in August 2019. The 111 full papers and 13 short papers presented in these volumes were carefully reviewed and selected from 265 submissions. PRICAI covers a wide range of topics such as AI theories, technologies and their applications in the areas of social and economic importance for countries in the Pacific Rim.

Advances in Information Retrieval

Advances in Information Retrieval PDF Author: Gabriella Pasi
Publisher: Springer
ISBN: 3319769413
Category : Computers
Languages : en
Pages : 852

Book Description
This book constitutes the refereed proceedings of the 40th European Conference on IR Research, ECIR 2018, held in Grenoble, France, in March 2018. The 39 full papers and 39 short papers presented together with 6 demos, 5 workshops and 3 tutorials, were carefully reviewed and selected from 303 submissions. Accepted papers cover the state of the art in information retrieval including topics such as: topic modeling, deep learning, evaluation, user behavior, document representation, recommendation systems, retrieval methods, learning and classication, and micro-blogs.

The SAGE Handbook of Digital Society

The SAGE Handbook of Digital Society PDF Author: William Housley
Publisher: SAGE
ISBN: 1529789133
Category : Social Science
Languages : en
Pages : 669

Book Description
This SAGE Handbook brings together cutting edge social scientific research and theoretical insight into the emerging contours of digital society. Chapters explore the relationship between digitisation, social organisation and social transformation at both the macro and micro level, making this a valuable resource for postgraduate students and academics conducting research across the social sciences. The topics covered are impressively far-ranging and timely, including machine learning, social media, surveillance, misinformation, digital labour, and beyond. This innovative Handbook perfectly captures the state of the art of a field which is rapidly gaining cross-disciplinary interest and global importance, and establishes a thematic framework for future teaching and research. Part 1: Theorising Digital Societies Part 2: Researching Digital Societies Part 3: Sociotechnical Systems and Disruptive Technologies in Action Part 4: Digital Society and New Social Dilemmas Part 5: Governance and Regulation Part 6: Digital Futures

Spoken Language Understanding

Spoken Language Understanding PDF Author: Gokhan Tur
Publisher: John Wiley & Sons
ISBN: 1119993946
Category : Language Arts & Disciplines
Languages : en
Pages : 443

Book Description
Spoken language understanding (SLU) is an emerging field in between speech and language processing, investigating human/ machine and human/ human communication by leveraging technologies from signal processing, pattern recognition, machine learning and artificial intelligence. SLU systems are designed to extract the meaning from speech utterances and its applications are vast, from voice search in mobile devices to meeting summarization, attracting interest from both commercial and academic sectors. Both human/machine and human/human communications can benefit from the application of SLU, using differing tasks and approaches to better understand and utilize such communications. This book covers the state-of-the-art approaches for the most popular SLU tasks with chapters written by well-known researchers in the respective fields. Key features include: Presents a fully integrated view of the two distinct disciplines of speech processing and language processing for SLU tasks. Defines what is possible today for SLU as an enabling technology for enterprise (e.g., customer care centers or company meetings), and consumer (e.g., entertainment, mobile, car, robot, or smart environments) applications and outlines the key research areas. Provides a unique source of distilled information on methods for computer modeling of semantic information in human/machine and human/human conversations. This book can be successfully used for graduate courses in electronics engineering, computer science or computational linguistics. Moreover, technologists interested in processing spoken communications will find it a useful source of collated information of the topic drawn from the two distinct disciplines of speech processing and language processing under the new area of SLU.

Result Page Generation for Web Searching: Emerging Research and Opportunities

Result Page Generation for Web Searching: Emerging Research and Opportunities PDF Author: Alli, Mostafa
Publisher: IGI Global
ISBN: 1799809633
Category : Computers
Languages : en
Pages : 126

Book Description
Diversity in user queries makes it challenging for search engines to effectively return a set of relevant results. Both user intentions to search the web and types of queries are vastly varied; consequently, horizontal and vertical search engines are developed to answer user queries more efficiently. However, these search engines present a variety of problems in web searching. Result Page Generation for Web Searching: Emerging Research and Opportunities is an essential reference publication that focuses on taking advantages from text and web mining in order to address the issues of recommendation and visualization in web searching. Highlighting a wide range of topics such as navigational searching, resource identification, and ambiguous queries, this book is ideally designed for computer engineers, web designers, programmers, academicians, researchers, and students.

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval PDF Author: Muskan Garg
Publisher: CRC Press
ISBN: 1003800483
Category : Computers
Languages : en
Pages : 271

Book Description
This book presents the basics and recent advancements in natural language processing and information retrieval in a single volume. It will serve as an ideal reference text for graduate students and academic researchers in interdisciplinary areas of electrical engineering, electronics engineering, computer engineering, and information technology. This text emphasizes the existing problem domains and possible new directions in natural language processing and information retrieval. It discusses the importance of information retrieval with the integration of machine learning, deep learning, and word embedding. This approach supports the quick evaluation of real-time data. It covers important topics including rumor detection techniques, sentiment analysis using graph-based techniques, social media data analysis, and language-independent text mining. Features: • Covers aspects of information retrieval in different areas including healthcare, data analysis, and machine translation • Discusses recent advancements in language- and domain-independent information extraction from textual and/or multimodal data • Explains models including decision making, random walk, knowledge graphs, word embedding, n-grams, and frequent pattern mining • Provides integrated approaches of machine learning, deep learning, and word embedding for natural language processing • Covers latest datasets for natural language processing and information retrieval for social media like Twitter The text is primarily written for graduate students and academic researchers in interdisciplinary areas of electrical engineering, electronics engineering, computer engineering, and information technology.

Artificial Intelligence and Machine Learning - A Precise Book to Learn Basics

Artificial Intelligence and Machine Learning - A Precise Book to Learn Basics PDF Author: pc
Publisher: by Mocktime Publication
ISBN:
Category : Computers
Languages : en
Pages : 61

Book Description
Artificial Intelligence and Machine Learning - A Precise Book to Learn Basics Table of Contents 1. Introduction to Artificial Intelligence and Machine Learning 1.1 What is Artificial Intelligence? 1.2 The Evolution of Artificial Intelligence 1.3 What is Machine Learning? 1.4 How Machine Learning Differs from Traditional Programming 1.5 The Importance of Artificial Intelligence and Machine Learning 2. Foundations of Machine Learning 2.1 Supervised Learning 2.1.1 Linear Regression 2.1.2 Logistic Regression 2.1.3 Decision Trees 2.2 Unsupervised Learning 2.2.1 Clustering 2.2.2 Dimensionality Reduction 2.3 Reinforcement Learning 2.3.1 Markov Decision Process 2.3.2 Q-Learning 3. Neural Networks and Deep Learning 3.1 Introduction to Neural Networks 3.2 Artificial Neural Networks 3.2.1 The Perceptron 3.2.2 Multi-Layer Perceptron 3.3 Convolutional Neural Networks 3.4 Recurrent Neural Networks 3.5 Generative Adversarial Networks 4. Natural Language Processing 4.1 Introduction to Natural Language Processing 4.2 Preprocessing and Text Representation 4.3 Sentiment Analysis 4.4 Named Entity Recognition 4.5 Text Summarization 5. Computer Vision 5.1 Introduction to Computer Vision 5.2 Image Processing 5.3 Object Detection 5.4 Image Segmentation 5.5 Face Recognition 6. Reinforcement Learning Applications 6.1 Reinforcement Learning in Robotics 6.2 Reinforcement Learning in Games 6.3 Reinforcement Learning in Finance 6.4 Reinforcement Learning in Healthcare 7. Ethics and Social Implications of Artificial Intelligence 7.1 Bias in Artificial Intelligence 7.2 The Future of Work 7.3 Privacy and Security 7.4 The Impact of AI on Society 8. Machine Learning Infrastructure 8.1 Cloud Infrastructure for Machine Learning 8.2 Distributed Machine Learning 8.3 DevOps for Machine Learning 9. Machine Learning Tools 9.1 Introduction to Machine Learning Tools 9.2 Python Libraries for Machine Learning 9.3 TensorFlow 9.4 Keras 9.5 PyTorch 10. Building and Deploying Machine Learning Models 10.1 Building a Machine Learning Model 10.2 Hyperparameter Tuning 10.3 Model Evaluation 10.4 Deployment Considerations 11. Time Series Analysis and Forecasting 11.1 Introduction to Time Series Analysis 11.2 ARIMA 11.3 Exponential Smoothing 11.4 Deep Learning for Time Series 12. Bayesian Machine Learning 12.1 Introduction to Bayesian Machine Learning 12.2 Bayesian Regression 12.3 Bayesian Classification 12.4 Bayesian Model Averaging 13. Anomaly Detection 13.1 Introduction to Anomaly Detection 13.2 Unsupervised Anomaly Detection 13.3 Supervised Anomaly Detection 13.4 Deep Learning for Anomaly Detection 14. Machine Learning in Healthcare 14.1 Introduction to Machine Learning in Healthcare 14.2 Electronic Health Records 14.3 Medical Image Analysis 14.4 Personalized Medicine 15. Recommender Systems 15.1 Introduction to Recommender Systems 15.2 Collaborative Filtering 15.3 Content-Based Filtering 15.4 Hybrid Recommender Systems 16. Transfer Learning 16.1 Introduction to Transfer Learning 16.2 Fine-Tuning 16.3 Domain Adaptation 16.4 Multi-Task Learning 17. Deep Reinforcement Learning 17.1 Introduction to Deep Reinforcement Learning 17.2 Deep Q-Networks 17.3 Actor-Critic Methods 17.4 Deep Reinforcement Learning Applications 18. Adversarial Machine Learning 18.1 Introduction to Adversarial Machine Learning 18.2 Adversarial Attacks 18.3 Adversarial Defenses 18.4 Adversarial Machine Learning Applications 19. Quantum Machine Learning 19.1 Introduction to Quantum Computing 19.2 Quantum Machine Learning 19.3 Quantum Computing Hardware 19.4 Quantum Machine Learning Applications 20. Machine Learning in Cybersecurity 20.1 Introduction to Machine Learning in Cybersecurity 20.2 Intrusion Detection 20.3 Malware Detection 20.4 Network Traffic Analysis 21. Future Directions in Artificial Intelligence and Machine Learning 21.1 Reinforcement Learning in Real-World Applications 21.2 Explainable Artificial Intelligence 21.3 Quantum Machine Learning 21.4 Autonomous Systems 22. Conclusion 22.1 Summary 22.2 Key Takeaways 22.3 Future Directions 22.4 Call to Action

Inventive Computation and Information Technologies

Inventive Computation and Information Technologies PDF Author: S. Smys
Publisher: Springer Nature
ISBN: 9811667233
Category : Technology & Engineering
Languages : en
Pages : 911

Book Description
This book is a collection of best selected papers presented at the International Conference on Inventive Computation and Information Technologies (ICICIT 2021), organized during 12–13 August 2021. The book includes papers in the research area of information sciences and communication engineering. The book presents novel and innovative research results in theory, methodology and applications of communication engineering and information technologies.