Author: Sebastian Will
Publisher: Springer Science & Business Media
ISBN: 3642336337
Category : Science
Languages : en
Pages : 270
Book Description
This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.
From Atom Optics to Quantum Simulation
Author: Sebastian Will
Publisher: Springer Science & Business Media
ISBN: 3642336337
Category : Science
Languages : en
Pages : 270
Book Description
This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.
Publisher: Springer Science & Business Media
ISBN: 3642336337
Category : Science
Languages : en
Pages : 270
Book Description
This thesis explores ultracold quantum gases of bosonic and fermionic atoms in optical lattices. The highly controllable experimental setting discussed in this work, has opened the door to new insights into static and dynamical properties of ultracold quantum matter. One of the highlights reported here is the development and application of a novel time-resolved spectroscopy technique for quantum many-body systems. By following the dynamical evolution of a many-body system after a quantum quench, the author shows how the important energy scales of the underlying Hamiltonian can be measured with high precision. This achievement, its application, and many other exciting results make this thesis of interest to a broad audience ranging from quantum optics to condensed matter physics. A lucid style of writing accompanied by a series of excellent figures make the work accessible to readers outside the rapidly growing research field of ultracold atoms.
Quantum Atom Optics
Author: Tim Byrnes
Publisher: Cambridge University Press
ISBN: 1108982115
Category : Science
Languages : en
Pages : 291
Book Description
The rapid development of quantum technologies has driven a revolution in related research areas such as quantum computation and communication, and quantum materials. The first prototypes of functional quantum devices are beginning to appear, frequently created using ensembles of atoms, which allow the observation of sensitive, quantum effects, and have important applications in quantum simulation and matter wave interferometry. This modern text offers a self-contained introduction to the fundamentals of quantum atom optics and atomic many-body matter wave systems. Assuming a familiarity with undergraduate quantum mechanics, this book will be accessible for graduate students and early career researchers moving into this important new field. A detailed description of the underlying theory of quantum atom optics is given, before development of the key, quantum, technological applications, such as atom interferometry, quantum simulation, quantum metrology, and quantum computing.
Publisher: Cambridge University Press
ISBN: 1108982115
Category : Science
Languages : en
Pages : 291
Book Description
The rapid development of quantum technologies has driven a revolution in related research areas such as quantum computation and communication, and quantum materials. The first prototypes of functional quantum devices are beginning to appear, frequently created using ensembles of atoms, which allow the observation of sensitive, quantum effects, and have important applications in quantum simulation and matter wave interferometry. This modern text offers a self-contained introduction to the fundamentals of quantum atom optics and atomic many-body matter wave systems. Assuming a familiarity with undergraduate quantum mechanics, this book will be accessible for graduate students and early career researchers moving into this important new field. A detailed description of the underlying theory of quantum atom optics is given, before development of the key, quantum, technological applications, such as atom interferometry, quantum simulation, quantum metrology, and quantum computing.
Quantum Simulations with Photons and Polaritons
Author: Dimitris G. Angelakis
Publisher: Springer
ISBN: 3319520253
Category : Science
Languages : en
Pages : 220
Book Description
This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.
Publisher: Springer
ISBN: 3319520253
Category : Science
Languages : en
Pages : 220
Book Description
This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative setting. This book covers some of the most important works in this area reviewing the proposal for Mott transitions and Luttinger liquid physics with light, to simulating interacting relativistic theories, topological insulators and gauge field physics. The stage of the field now is at a point where on top of the numerous theory proposals; experiments are also reported. Connecting to the theory proposals presented in the chapters, the main experimental quantum technology platforms developed from groups worldwide to realize photonic and polaritonic simulators in the laboratory are also discussed. These include coupled microwave resonator arrays in superconducting circuits, semiconductor based polariton systems, and integrated quantum photonic chips. This is the first book dedicated to photonic approaches to quantum simulation, reviewing the fundamentals for the researcher new to the field, and providing a complete reference for the graduate student starting or already undergoing PhD studies in this area.
Ultracold Atoms in Optical Lattices
Author: Maciej Lewenstein
Publisher: Oxford University Press
ISBN: 0199573123
Category : Science
Languages : en
Pages : 494
Book Description
This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.
Publisher: Oxford University Press
ISBN: 0199573123
Category : Science
Languages : en
Pages : 494
Book Description
This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.
Nanoscale Quantum Optics
Author: M. Agio
Publisher: IOS Press
ISBN: 1643680994
Category : Science
Languages : en
Pages : 280
Book Description
With the launch of the Quantum Technology Flagship Programme by the European Commission, developments in the realization of new technologies based on quantum physics have been recognized as a priority. These are important for cryptographic techniques for telecommunications security, new computing hardware that can solve problems so far inaccessible even to the latest generation of supercomputers, and precision standards and sensors with important applications ranging from materials science to medical diagnostics. This book presents a collection of lectures from the International School of Physics Enrico Fermi on Nanoscale Quantum Optics, held in Varenna, Italy, from 23 – 28 July 2018. The course was attended by 60 students, researchers and lecturers, and provided an opportunity to train a new generation of scientists on topics that promise great innovations in science and technology. Included here are 9 lectures and seminars and 3 poster contributions from the school. Subjects covered include: basic concepts for quantum optics and quantum technologies; materials for quantum nanophotonics; quantum optics and non-classical light generation; creating quantum correlations between quantum-dot spins; platforms for telecom-entangled photon sources; nanoscale sensing and quantum coherence; and nano-optomechanics, among others. The book offers a valuable overview of the state-of-the-art and current trends in nanoscale quantum optics. It will be invaluable for all those with an interest in this subject.
Publisher: IOS Press
ISBN: 1643680994
Category : Science
Languages : en
Pages : 280
Book Description
With the launch of the Quantum Technology Flagship Programme by the European Commission, developments in the realization of new technologies based on quantum physics have been recognized as a priority. These are important for cryptographic techniques for telecommunications security, new computing hardware that can solve problems so far inaccessible even to the latest generation of supercomputers, and precision standards and sensors with important applications ranging from materials science to medical diagnostics. This book presents a collection of lectures from the International School of Physics Enrico Fermi on Nanoscale Quantum Optics, held in Varenna, Italy, from 23 – 28 July 2018. The course was attended by 60 students, researchers and lecturers, and provided an opportunity to train a new generation of scientists on topics that promise great innovations in science and technology. Included here are 9 lectures and seminars and 3 poster contributions from the school. Subjects covered include: basic concepts for quantum optics and quantum technologies; materials for quantum nanophotonics; quantum optics and non-classical light generation; creating quantum correlations between quantum-dot spins; platforms for telecom-entangled photon sources; nanoscale sensing and quantum coherence; and nano-optomechanics, among others. The book offers a valuable overview of the state-of-the-art and current trends in nanoscale quantum optics. It will be invaluable for all those with an interest in this subject.
Analogue Quantum Simulation
Author: Dominik Hangleiter
Publisher: Springer Nature
ISBN: 3030872165
Category : Science
Languages : en
Pages : 153
Book Description
This book presents fresh insights into analogue quantum simulation. It argues that these simulations are a new instrument of science. They require a bespoke philosophical analysis, sensitive to both the similarities to and the differences with conventional scientific practices such as analogical argument, experimentation, and classical simulation. The analysis situates the various forms of analogue quantum simulation on the methodological map of modern science. In doing so, it clarifies the functions that analogue quantum simulation serves in scientific practice. To this end, the authors introduce a number of important terminological distinctions. They establish that analogue quantum ‘computation' and ‘emulation' are distinct scientific practices and lead to distinct forms of scientific understanding. The authors also demonstrate the normative value of the computation vs. emulation distinction at both an epistemic and a pragmatic level. The volume features a range of detailed case studies focusing on: i) cold atom computation of many-body localisation and the Higgs mode; ii) photonic emulation of quantum effects in biological systems; and iii) emulation of Hawing radiation in dispersive optical media. Overall, readers will discover a normative framework to isolate and support the goals of scientists undertaking analogue quantum simulation and emulation. This framework will prove useful to both working scientists and philosophers of science interested in cutting-edge scientific practice.
Publisher: Springer Nature
ISBN: 3030872165
Category : Science
Languages : en
Pages : 153
Book Description
This book presents fresh insights into analogue quantum simulation. It argues that these simulations are a new instrument of science. They require a bespoke philosophical analysis, sensitive to both the similarities to and the differences with conventional scientific practices such as analogical argument, experimentation, and classical simulation. The analysis situates the various forms of analogue quantum simulation on the methodological map of modern science. In doing so, it clarifies the functions that analogue quantum simulation serves in scientific practice. To this end, the authors introduce a number of important terminological distinctions. They establish that analogue quantum ‘computation' and ‘emulation' are distinct scientific practices and lead to distinct forms of scientific understanding. The authors also demonstrate the normative value of the computation vs. emulation distinction at both an epistemic and a pragmatic level. The volume features a range of detailed case studies focusing on: i) cold atom computation of many-body localisation and the Higgs mode; ii) photonic emulation of quantum effects in biological systems; and iii) emulation of Hawing radiation in dispersive optical media. Overall, readers will discover a normative framework to isolate and support the goals of scientists undertaking analogue quantum simulation and emulation. This framework will prove useful to both working scientists and philosophers of science interested in cutting-edge scientific practice.
Taming Atoms
Author: Vassilis E. Lembessis
Publisher:
ISBN: 9781510635203
Category : Atomic theory
Languages : en
Pages : 192
Book Description
"The last four decades have witnessed a renaissance of atomic physics thanks to the spectacular theoretical and experimental achievements in atom cooling and trapping. These advancements have made major contributions to achieving complete control over single quantum systems. Applications such as atom lasers, quantum computers, optical tweezers, atomic conveyor belts, quantum simulators, among others, will be fundamental to future technologies. This book-whose author has been actively researching the field for about three decades-is the first to popularize the field of atomic physics and aims to help a broad audience fully appreciate the mentioned advancements. It provides the basic prerequisite knowledge, the historical and scientific roots of the field, and the most important applications. Taming the Atom is written for science students, science fans, educators, and science communicators. The rich bibliography makes it also useful for graduate students and researchers in the field"--
Publisher:
ISBN: 9781510635203
Category : Atomic theory
Languages : en
Pages : 192
Book Description
"The last four decades have witnessed a renaissance of atomic physics thanks to the spectacular theoretical and experimental achievements in atom cooling and trapping. These advancements have made major contributions to achieving complete control over single quantum systems. Applications such as atom lasers, quantum computers, optical tweezers, atomic conveyor belts, quantum simulators, among others, will be fundamental to future technologies. This book-whose author has been actively researching the field for about three decades-is the first to popularize the field of atomic physics and aims to help a broad audience fully appreciate the mentioned advancements. It provides the basic prerequisite knowledge, the historical and scientific roots of the field, and the most important applications. Taming the Atom is written for science students, science fans, educators, and science communicators. The rich bibliography makes it also useful for graduate students and researchers in the field"--
Quantum Gases
Author: Nick Proukakis
Publisher: World Scientific
ISBN: 1848168128
Category : Science
Languages : en
Pages : 579
Book Description
This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
Publisher: World Scientific
ISBN: 1848168128
Category : Science
Languages : en
Pages : 579
Book Description
This volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics.
Quantum Gas Experiments: Exploring Many-body States
Author: Paivi Torma
Publisher: World Scientific
ISBN: 1783264772
Category : Science
Languages : en
Pages : 339
Book Description
Quantum phenomena of many-particle systems are fascinating in their complexity and are consequently not fully understood and largely untapped in terms of practical applications. Ultracold gases provide a unique platform to build up model systems of quantum many-body physics with highly controlled microscopic constituents. In this way, many-body quantum phenomena can be investigated with an unprecedented level of precision, and control and models that cannot be solved with present day computers may be studied using ultracold gases as a quantum simulator.This book addresses the need for a comprehensive description of the most important advanced experimental methods and techniques that have been developed along with the theoretical framework in a clear and applicable format. The focus is on methods that are especially crucial in probing and understanding the many-body nature of the quantum phenomena in ultracold gases and most topics are covered both from a theoretical and experimental viewpoint, with interrelated chapters written by experts from both sides of research.Graduate students and post-doctoral researches working on ultracold gases will benefit from this book, as well as researchers from other fields who wish to gain an overview of the recent fascinating developments in this very dynamically evolving field. Sufficient level of both detailed high level research and a pedagogical approach is maintained throughout the book so as to be of value to those entering the field as well as advanced researchers. Furthermore, both experimentalists and theorists will benefit from the book; close collaboration between the two are continuously driving the field to a very high level and will be strengthened to continue the important progress yet to be made in the field.
Publisher: World Scientific
ISBN: 1783264772
Category : Science
Languages : en
Pages : 339
Book Description
Quantum phenomena of many-particle systems are fascinating in their complexity and are consequently not fully understood and largely untapped in terms of practical applications. Ultracold gases provide a unique platform to build up model systems of quantum many-body physics with highly controlled microscopic constituents. In this way, many-body quantum phenomena can be investigated with an unprecedented level of precision, and control and models that cannot be solved with present day computers may be studied using ultracold gases as a quantum simulator.This book addresses the need for a comprehensive description of the most important advanced experimental methods and techniques that have been developed along with the theoretical framework in a clear and applicable format. The focus is on methods that are especially crucial in probing and understanding the many-body nature of the quantum phenomena in ultracold gases and most topics are covered both from a theoretical and experimental viewpoint, with interrelated chapters written by experts from both sides of research.Graduate students and post-doctoral researches working on ultracold gases will benefit from this book, as well as researchers from other fields who wish to gain an overview of the recent fascinating developments in this very dynamically evolving field. Sufficient level of both detailed high level research and a pedagogical approach is maintained throughout the book so as to be of value to those entering the field as well as advanced researchers. Furthermore, both experimentalists and theorists will benefit from the book; close collaboration between the two are continuously driving the field to a very high level and will be strengthened to continue the important progress yet to be made in the field.
Controlling the Quantum World
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309102707
Category : Science
Languages : en
Pages : 245
Book Description
As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.
Publisher: National Academies Press
ISBN: 0309102707
Category : Science
Languages : en
Pages : 245
Book Description
As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.