Foundations for Higher Mathematics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Foundations for Higher Mathematics PDF full book. Access full book title Foundations for Higher Mathematics by Wendell Motter. Download full books in PDF and EPUB format.

Foundations for Higher Mathematics

Foundations for Higher Mathematics PDF Author: Wendell Motter
Publisher:
ISBN: 9781081357788
Category :
Languages : en
Pages : 107

Book Description
This textbook prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in courses called transition courses, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as the real number system, logic, set theory, mathematical induction, relations, functions, and continuity. It is also a good reference text that students can use when writing or reading proofs in their more advanced courses.

Foundations for Higher Mathematics

Foundations for Higher Mathematics PDF Author: Wendell Motter
Publisher:
ISBN: 9781081357788
Category :
Languages : en
Pages : 107

Book Description
This textbook prepares students for the more abstract mathematics courses that follow calculus. Appropriate for self-study or for use in courses called transition courses, this text introduces students to proof techniques, analyzing proofs, and writing proofs of their own. Written in a clear, conversational style, this book provides a solid introduction to such topics as the real number system, logic, set theory, mathematical induction, relations, functions, and continuity. It is also a good reference text that students can use when writing or reading proofs in their more advanced courses.

Transition to Higher Mathematics

Transition to Higher Mathematics PDF Author: Bob A. Dumas
Publisher: McGraw-Hill Education
ISBN: 9780071106474
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 0

Book Description
This book is written for students who have taken calculus and want to learn what "real mathematics" is.

Foundations of Higher Mathematics

Foundations of Higher Mathematics PDF Author: Daniel M. Fendel
Publisher: Addison Wesley
ISBN:
Category : Mathematics
Languages : en
Pages : 488

Book Description
Foundations of Higher Mathematics: Exploration and Proof is the ideal text to bridge the crucial gap between the standard calculus sequence and upper division mathematics courses. The book takes a fresh approach to the subject: it asks students to explore mathematical principles on their own and challenges them to think like mathematicians. Two unique features-an exploration approach to mathematics and an intuitive and integrated presentation of logic based on predicate calculus-distinguish the book from the competition. Both features enable students to own the mathematics they're working on. As a result, your students develop a stronger motivation to tackle upper-level courses and gain a deeper understanding of concepts presented.

Practical Foundations of Mathematics

Practical Foundations of Mathematics PDF Author: Paul Taylor
Publisher: Cambridge University Press
ISBN: 9780521631075
Category : Mathematics
Languages : en
Pages : 590

Book Description
Practical Foundations collects the methods of construction of the objects of twentieth-century mathematics. Although it is mainly concerned with a framework essentially equivalent to intuitionistic Zermelo-Fraenkel logic, the book looks forward to more subtle bases in categorical type theory and the machine representation of mathematics. Each idea is illustrated by wide-ranging examples, and followed critically along its natural path, transcending disciplinary boundaries between universal algebra, type theory, category theory, set theory, sheaf theory, topology and programming. Students and teachers of computing, mathematics and philosophy will find this book both readable and of lasting value as a reference work.

Bridge to Higher Mathematics

Bridge to Higher Mathematics PDF Author: Sam Vandervelde
Publisher: Lulu.com
ISBN: 055750337X
Category : Education
Languages : en
Pages : 258

Book Description
This engaging math textbook is designed to equip students who have completed a standard high school math curriculum with the tools and techniques that they will need to succeed in upper level math courses. Topics covered include logic and set theory, proof techniques, number theory, counting, induction, relations, functions, and cardinality.

New Foundations in Mathematics

New Foundations in Mathematics PDF Author: Garret Sobczyk
Publisher: Springer Science & Business Media
ISBN: 0817683852
Category : Mathematics
Languages : en
Pages : 373

Book Description
The first book of its kind, New Foundations in Mathematics: The Geometric Concept of Number uses geometric algebra to present an innovative approach to elementary and advanced mathematics. Geometric algebra offers a simple and robust means of expressing a wide range of ideas in mathematics, physics, and engineering. In particular, geometric algebra extends the real number system to include the concept of direction, which underpins much of modern mathematics and physics. Much of the material presented has been developed from undergraduate courses taught by the author over the years in linear algebra, theory of numbers, advanced calculus and vector calculus, numerical analysis, modern abstract algebra, and differential geometry. The principal aim of this book is to present these ideas in a freshly coherent and accessible manner. New Foundations in Mathematics will be of interest to undergraduate and graduate students of mathematics and physics who are looking for a unified treatment of many important geometric ideas arising in these subjects at all levels. The material can also serve as a supplemental textbook in some or all of the areas mentioned above and as a reference book for professionals who apply mathematics to engineering and computational areas of mathematics and physics.

Homotopy Type Theory: Univalent Foundations of Mathematics

Homotopy Type Theory: Univalent Foundations of Mathematics PDF Author:
Publisher: Univalent Foundations
ISBN:
Category :
Languages : en
Pages : 484

Book Description


A Foundation Course in Mathematics

A Foundation Course in Mathematics PDF Author: Ajit Kumar
Publisher:
ISBN: 9781783323586
Category : Mathematics
Languages : en
Pages : 148

Book Description
Written in a conversational style to impart critical and analytical thinking which will be beneficial for students of any discipline. It also gives emphasis on problem solving and proof writing skills, key aspects of learning mathematics.

The Foundations of Mathematics

The Foundations of Mathematics PDF Author: Kenneth Kunen
Publisher:
ISBN: 9781904987147
Category : Mathematics
Languages : en
Pages : 251

Book Description
Mathematical logic grew out of philosophical questions regarding the foundations of mathematics, but logic has now outgrown its philosophical roots, and has become an integral part of mathematics in general. This book is designed for students who plan to specialize in logic, as well as for those who are interested in the applications of logic to other areas of mathematics. Used as a text, it could form the basis of a beginning graduate-level course. There are three main chapters: Set Theory, Model Theory, and Recursion Theory. The Set Theory chapter describes the set-theoretic foundations of all of mathematics, based on the ZFC axioms. It also covers technical results about the Axiom of Choice, well-orderings, and the theory of uncountable cardinals. The Model Theory chapter discusses predicate logic and formal proofs, and covers the Completeness, Compactness, and Lowenheim-Skolem Theorems, elementary submodels, model completeness, and applications to algebra. This chapter also continues the foundational issues begun in the set theory chapter. Mathematics can now be viewed as formal proofs from ZFC. Also, model theory leads to models of set theory. This includes a discussion of absoluteness, and an analysis of models such as H( ) and R( ). The Recursion Theory chapter develops some basic facts about computable functions, and uses them to prove a number of results of foundational importance; in particular, Church's theorem on the undecidability of logical consequence, the incompleteness theorems of Godel, and Tarski's theorem on the non-definability of truth.

Foundations of Discrete Mathematics

Foundations of Discrete Mathematics PDF Author: K. D. Joshi
Publisher: New Age International
ISBN: 9788122401202
Category : Mathematics
Languages : en
Pages : 768

Book Description
This Book Is Meant To Be More Than Just A Text In Discrete Mathematics. It Is A Forerunner Of Another Book Applied Discrete Structures By The Same Author. The Ultimate Goal Of The Two Books Are To Make A Strong Case For The Inclusion Of Discrete Mathematics In The Undergraduate Curricula Of Mathematics By Creating A Sequence Of Courses In Discrete Mathematics Parallel To The Traditional Sequence Of Calculus-Based Courses.The Present Book Covers The Foundations Of Discrete Mathematics In Seven Chapters. It Lays A Heavy Emphasis On Motivation And Attempts Clarity Without Sacrificing Rigour. A List Of Typical Problems Is Given In The First Chapter. These Problems Are Used Throughout The Book To Motivate Various Concepts. A Review Of Logic Is Included To Gear The Reader Into A Proper Frame Of Mind. The Basic Counting Techniques Are Covered In Chapters 2 And 7. Those In Chapter 2 Are Elementary. But They Are Intentionally Covered In A Formal Manner So As To Acquaint The Reader With The Traditional Definition-Theorem-Proof Pattern Of Mathematics. Chapters 3 Introduces Abstraction And Shows How The Focal Point Of Todays Mathematics Is Not Numbers But Sets Carrying Suitable Structures. Chapter 4 Deals With Boolean Algebras And Their Applications. Chapters 5 And 6 Deal With More Traditional Topics In Algebra, Viz., Groups, Rings, Fields, Vector Spaces And Matrices.The Presentation Is Elementary And Presupposes No Mathematical Maturity On The Part Of The Reader. Instead, Comments Are Inserted Liberally To Increase His Maturity. Each Chapter Has Four Sections. Each Section Is Followed By Exercises (Of Various Degrees Of Difficulty) And By Notes And Guide To Literature. Answers To The Exercises Are Provided At The End Of The Book.