Foundation Mathematics and Statistics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Foundation Mathematics and Statistics PDF full book. Access full book title Foundation Mathematics and Statistics by Thomas Bending. Download full books in PDF and EPUB format.

Foundation Mathematics and Statistics

Foundation Mathematics and Statistics PDF Author: Thomas Bending
Publisher:
ISBN: 9781844806119
Category : Mathematics
Languages : en
Pages : 0

Book Description
Foundation Mathematics and Statistics provides the reader with a firm understanding of the maths and stats they will need for a computing degree or diploma. The book will give the reader competency in a range of mathematical tools required for technical subjects, and the confidence they will need in the classroom. Explanations of mathematical tools are supported by real world examples to make this subject accessible. Graded exercises enable the reader to practice and revise each topic. Starting with the basics of arithmetic and algebraic manipulation, the book covers everything from exponentials to logarithms. Providing a general grounding in proportions, ratios and percentages, this book will also help readers to understand probability and set theory. Finally, coverage includes the summary and presentation of statistical data and the drawing of histograms.

Foundation Mathematics and Statistics

Foundation Mathematics and Statistics PDF Author: Thomas Bending
Publisher:
ISBN: 9781844806119
Category : Mathematics
Languages : en
Pages : 0

Book Description
Foundation Mathematics and Statistics provides the reader with a firm understanding of the maths and stats they will need for a computing degree or diploma. The book will give the reader competency in a range of mathematical tools required for technical subjects, and the confidence they will need in the classroom. Explanations of mathematical tools are supported by real world examples to make this subject accessible. Graded exercises enable the reader to practice and revise each topic. Starting with the basics of arithmetic and algebraic manipulation, the book covers everything from exponentials to logarithms. Providing a general grounding in proportions, ratios and percentages, this book will also help readers to understand probability and set theory. Finally, coverage includes the summary and presentation of statistical data and the drawing of histograms.

Introduction to the Mathematical and Statistical Foundations of Econometrics

Introduction to the Mathematical and Statistical Foundations of Econometrics PDF Author: Herman J. Bierens
Publisher: Cambridge University Press
ISBN: 9780521542241
Category : Business & Economics
Languages : en
Pages : 356

Book Description
This book is intended for use in a rigorous introductory PhD level course in econometrics.

Mathematical Foundations for Data Analysis

Mathematical Foundations for Data Analysis PDF Author: Jeff M. Phillips
Publisher: Springer Nature
ISBN: 3030623416
Category : Mathematics
Languages : en
Pages : 299

Book Description
This textbook, suitable for an early undergraduate up to a graduate course, provides an overview of many basic principles and techniques needed for modern data analysis. In particular, this book was designed and written as preparation for students planning to take rigorous Machine Learning and Data Mining courses. It introduces key conceptual tools necessary for data analysis, including concentration of measure and PAC bounds, cross validation, gradient descent, and principal component analysis. It also surveys basic techniques in supervised (regression and classification) and unsupervised learning (dimensionality reduction and clustering) through an accessible, simplified presentation. Students are recommended to have some background in calculus, probability, and linear algebra. Some familiarity with programming and algorithms is useful to understand advanced topics on computational techniques.

Foundations and Applications of Statistics

Foundations and Applications of Statistics PDF Author: Randall Pruim
Publisher: American Mathematical Soc.
ISBN: 1470428482
Category : Computers
Languages : en
Pages : 842

Book Description
Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.

Step-By-Step Business Math and Statistics

Step-By-Step Business Math and Statistics PDF Author: Jin W. Choi
Publisher:
ISBN: 9781609278724
Category : Business mathematics
Languages : en
Pages : 0

Book Description
Step-by-Step Business Math and Statistics is written to help those who need a quick refresher on mathematics and statistics as the foundation of a rigorous MBA program. This book fills the gap left by many textbooks that are often dedicated to either mathematics or statistics, but not both. It also serves as both a textbook that describes basic concepts and a workbook that shows plenty of examples and exercise problems. This book covers only the most fundamental topics in business mathematics and statistics and truly lays down the basic concepts step by step. Step-by-Step Business Math and Statistics covers the essentials of mathematics and statistics, including: - Algebra Review - Calculus Review - Optimization Methods - Applications to Economics - Data Collection Methods - Probability Theory - Sampling Distributions - Multiple Regression Analysis Jin Choi is Associate Professor of Economics in the Kellstadt Graduate School of Business at DePaul University (Chicago, Illinois). He specializes in teaching quantitative topics such as business mathematics, statistics, forecasting, and quantitative investment analysis. He also teaches topics on money and banking and serves as a member of the board of directors of a $555 million community bank in Chicago. He received the Excellence in Teaching award in 2007 from DePaul University and emphasizes practical use of theory in his teaching.

A Mathematical Primer for Social Statistics

A Mathematical Primer for Social Statistics PDF Author: John Fox
Publisher: SAGE
ISBN: 1412960800
Category : Social Science
Languages : en
Pages : 185

Book Description
The ideal primer for students and researchers across the social sciences who wish to master the necessary maths in order to pursue studies involving advanced statistical methods

Fundamentals of Mathematical Statistics

Fundamentals of Mathematical Statistics PDF Author: S.C. Gupta
Publisher: Sultan Chand & Sons
ISBN: 9351611736
Category : Mathematics
Languages : en
Pages : 22

Book Description
Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Some prominent additions are given below: 1. Variance of Degenerate Random Variable 2. Approximate Expression for Expectation and Variance 3. Lyapounov’s Inequality 4. Holder’s Inequality 5. Minkowski’s Inequality 6. Double Expectation Rule or Double-E Rule and many others

Mathematical Foundations of Infinite-Dimensional Statistical Models

Mathematical Foundations of Infinite-Dimensional Statistical Models PDF Author: Evarist Giné
Publisher: Cambridge University Press
ISBN: 1009022784
Category : Mathematics
Languages : en
Pages : 706

Book Description
In nonparametric and high-dimensional statistical models, the classical Gauss–Fisher–Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, approximation and wavelet theory, and the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In a final chapter the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. Winner of the 2017 PROSE Award for Mathematics.

Foundations of Mathematical Analysis

Foundations of Mathematical Analysis PDF Author: Richard Johnsonbaugh
Publisher: Courier Corporation
ISBN: 0486134776
Category : Mathematics
Languages : en
Pages : 450

Book Description
Definitive look at modern analysis, with views of applications to statistics, numerical analysis, Fourier series, differential equations, mathematical analysis, and functional analysis. More than 750 exercises; some hints and solutions. 1981 edition.

Classic Topics on the History of Modern Mathematical Statistics

Classic Topics on the History of Modern Mathematical Statistics PDF Author: Prakash Gorroochurn
Publisher: John Wiley & Sons
ISBN: 1119127939
Category : Mathematics
Languages : en
Pages : 776

Book Description
"There is nothing like it on the market...no others are as encyclopedic...the writing is exemplary: simple, direct, and competent." —George W. Cobb, Professor Emeritus of Mathematics and Statistics, Mount Holyoke College Written in a direct and clear manner, Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times presents a comprehensive guide to the history of mathematical statistics and details the major results and crucial developments over a 200-year period. Presented in chronological order, the book features an account of the classical and modern works that are essential to understanding the applications of mathematical statistics. Divided into three parts, the book begins with extensive coverage of the probabilistic works of Laplace, who laid much of the foundations of later developments in statistical theory. Subsequently, the second part introduces 20th century statistical developments including work from Karl Pearson, Student, Fisher, and Neyman. Lastly, the author addresses post-Fisherian developments. Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times also features: A detailed account of Galton's discovery of regression and correlation as well as the subsequent development of Karl Pearson's X2 and Student's t A comprehensive treatment of the permeating influence of Fisher in all aspects of modern statistics beginning with his work in 1912 Significant coverage of Neyman–Pearson theory, which includes a discussion of the differences to Fisher’s works Discussions on key historical developments as well as the various disagreements, contrasting information, and alternative theories in the history of modern mathematical statistics in an effort to provide a thorough historical treatment Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times is an excellent reference for academicians with a mathematical background who are teaching or studying the history or philosophical controversies of mathematics and statistics. The book is also a useful guide for readers with a general interest in statistical inference.